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A Study on the Role of Pivots in Bayesian Statisticsl)

Hyungtae Hwang?2)

Abstract

The concept of pivot has been widely used in various classical inferences. In this
paper, it is proved by use of pivotal quantities that the Bayesian inferences can be
arrived at the same results of classical inferences for the location-scale parameters
models under the assumption of non-informative prior distributions. Some theorems
are proposed in which the posterior distribution and the sampling distribution of a
pivotal quantity coincide. The theorems are applied illustratively to some statistical
models.
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1. Introduction

It is not an unusual case that a result of Bayesian inference coincide with that of classical
inference for parameters of interest. In such a case, it is commonly observed that the prior
distribution is supposed to be a non-informative prior distribution of Jeffrey’'s type. Such
cases can be easily found in Box and Tiao (1973) or Lee (1989) for the estimation problems,
and in works of Hwang (2001) for the hypothesis testing problems.

More careful observation reveals that the result of Bayesian inference under the
non-informative prior distribution frequently coincides with that of classical inference when the
inferences are performed through pivotal quantities. A pivotal quantity is defined as a
statistical quantity, a function of sample and parameters, of which sampling distribution does
not depend on the parameter values. Here, sampling distribution means the distribution of a
statistical quantity, possibly a function of sample and parameters, given the parameter values.

In this paper, we consider location-scale parameters models with suitable pivotal quantities
and Jeffrey’s non-informative prior distributions. In such cases, it is shown by change of
variables methods that the posterior distributions of the pivotal quantities exactly coincide with
their sampling distributions regardless of sample sizes. Our results are applied to some typical
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statistical models including the simple regression model and the analysis of variance model,
illustratively. An example is also presented to show that our results can be applied to
non-location-scale parameters models.

2. Main results

In this section, some theorems are introduced which show the coincidence of sampling
distribution and posterior distribution of pivotal quantities from location-scale parameters
models. We assume the Jeffrey’s non-informative prior distributions in these theorems. A
result for location parameter model is shown in the following Theorem 1.

Theorem 1. (The case of location parameter model)
Assume the followings:

x| 0)=Ax—0),
(@) <1, —co<f<+o0,
Let w=w(x,8) =x—0 Then, we have plw| 8)=p(w| x) = Aw), that is, the sampling
distribution and the posterior distribution of a pivotal quantity, w, are coincident to each

other.

Proof. It is clear that p(w | 8)= Aw). Since p(x, §) =p(x | Oa(6) o< Ax— §), it can be
shown that {x, w) o« Aw) by substituting x=x, w=x—6. Thus we have

pw| x) o< plx,w) o« f(w), and hence the theorem follows.
The following Theorem 2 shows the result for scale parameter model.

Theorem 2. (The case of scale parameter model)
Assume the followings:

1 x
plxl p)= ”f( 77),
a( ) OCL”, 7>0.

Let w=w(x, 7= % Then, we have p(wl| n)=p(w!| x)=Aw), that is, the sampling

distribution and the posterior distribution of a pivotal quantity, w, are coincident to each

other.

Proof. It is clear that p(w]| )= Aw). Since p(x, 7) =p(x| n)ﬂ(n)OC#f(%), it can be
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easily shown that px, w) o % Aw) by substituting x=ux, w= Thus we have

R

plw | x) o< plx, w) o< -91; Aw) o« Aw), and hence the theorem follows.

The following Theorem 3 shows the result for location-scale parameter model.

Theorem 3. (The case of location-scale parameter model)
Assume the followings:

1 ,ox=0\y 1,2
D(x,yle,ri)—”fl( . ) 77f2(77)’

(8, ) < %7 —oo << +oo, >0,

Let w=w(x,y 6 7= x; g . Then, we have pw| 0, 7)=p(wl|x,y), that is, the

sampling distribution and the posterior distribution of a pivotal quantity, w, are coincident to

each other.

Proof. From the assumptions, we have
Hw,,6.1) = —5 H(EDRED, (1)

Hence it follows that

x— 8
y

by substituting w= ,y=y, =460, n=1.

Therefore, we have
Hwl 6,1) & p(w, 0,7) & + [t(wdf(Dat o< [ t:(wdfy (D, @
On the other hand, it follows from (1) that
px, 9, w,7) < —f?%fl(%)]l)fz(%),

x—0
y

by substituting x=x, y=y, w= 1= 7.
Hence we have by integration,

#x,y,w) o L [ ehwih, (et
Thus we have

Hwlx,3) o< pxv,w) o o [thi(wdf(Dat o« [ th(wd (D, 3)

Then the theorem follows from (2) and (3).



224 Hyungtae Hwang

In fact, it can be shown by the analogous methods that the result of Theorem 3 holds
when x, §, w are multivariate quantities. Hence we state the result without proof in the
following Theorem 4.

Theorem 4. (The multivariate case)
Assume the followings:

S P Sl S 7 skl 7 S U
p(xli' ’xk’y. 01; rek’ 77) 77k fl( 77 ’ s 77 ) 77f2( 7}),
(6, Ok ) < ‘}7‘, —o0 <<+, >0,
x,— 0 Xp— 0
(wy, =, we) = ly 1,"‘, ky k)
Then we have p(wly'”) wk | 01’“.70}39 7])=D(WI,"',Wk l xly."yxk’y)-

3. Some applications

In this section, we provide some applications of theorems in section 2. The results of the
following examples 1 ~4 can be found in Box and Tiao (1973) or Lee (1989), but the proofs
of them generally contain long series of substitutions and integrals. Here, we provide much
simpler derivations of them by use of our theorems. In the following examples, there are
sufficient statistics for each problem. Hence we may start with these sufficient statistics for
the following examples.

Example 1. (A normal population)

Let xy,'-,x, be a random sample from the normal distribution N(p,oz), and assume the

joint prior distribution, #(x,¢) o« 1/0. The sample mean and sample variance are denoted by

=41 ﬁxi and s?=—1 2(95,.—_902, respectively.
n =1 n—1 =1

Let wl=ﬁ. Then w; is a pivotal quantity whose sampling distribution is #(n#—1).

-_ N2
Note that the sampling distributions of ﬁ and Jn—ozl& are N(0,1) and 2X(n—1),

respectively, and are independent. Hence it follows by applying Theorem 3 that the posterior
distribution of w, is also given by #(n—1).

Now let w2=—f;. Then the posterior distribution of wy is identical to its sampling
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V2
distribution by Theorem 2. Note that in—&l& =(n—1) w22 and its sampling distribution

_1)e2
is given by x*(»—1). Hence the posterior distribution of —(&?‘Z—ILS— is also given by

(n—1).
Example 2. (Two normal populations with equal variances)

Let x,,%x, and ¥,',¥, be independent random samples from N(,ul,az) and

N(uy, 6%), respectively. Suppose (g, #3,0) o 1/¢ for joint prior distribution. Let x, y,

s%, s% denote the corresponding sample means and sample variances respectively, and

. (m—1) s*+(n—1) $9°
5= (m+n—2)

denote the pooled sample variance.

(_x—-J—/)“ (p1— #9)
s(1/m+1/m) '

distribution is #(m-+ n—2). Hence the posterior distribution of w; is also t(m+n—2) by

First, letting w,= w; is a pivotal quantity whose sampling

applying Theorem 3.
Next, let w,=s5s,/0. Then w, is a pivotal quantity. Thus the posterior distribution of ws is
identical to its sampling distribution by Theorem 2. Since the sampling distribution of

(m+n—2) s,,z/cf2 is given by x*(m+#n—2) and it is a function of wj, it follows that the

posterior distribution of (m+n—2) s,,z/o2 is also given by x*(m+n—2).

Example 3. (Simple linear regression model)

Consider the following simple linear regression model:
y; ~ independently N(a+ Pr;, d*), i=1,,n,
where x;,**,%, are known constants. Suppose 7n(a,B,0) < 1/o, and let a, b and %
denote the ordinary least squares estimators of @ and f, and the mean squared errors,
respectively.

First, let w1=-£—Sb/LS&, where S,°= Zl(xi—_x)z. Then w; is a pivotal quantity whose
R =

sampling distribution is #(#—2). Hence the posterior distribution of w; is shown to be
t(n—2) by applying Theorem 3.

y*_a_Bx*

wy= i where y"=a+bx". Then w, is a pivotal
2w et (5 0%/ S :

Next, let
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quantity whose sampling distribution is #(#—2). Hence the posterior distribution of w; is

shown to be #(n—2) by applying Theorem 3.

Finally, let w;=s/o. Then, it can be shown as in Example 2 that the posterior

distribution of (%—2)s°/d® = (n—2)w?} is given by »*(n—2).
Example 4. (Analysis of variance model)

Let x_lz be independent treatment means with replication numbers g, -, 7,
respectively. The sampling distribution of _x—, is assumed to be N( 6[,02/ n;), for i=1,- k&

respectively. Let s° be independent of Z,?k of which sampling distribution is given by

2
i—“g | & ~ xz(r), where # represents the error degrees of freedom. For prior distribution,

we assume (6,0, 0) o< 1/0‘.

Let (wy, -, wy) =(——, -, 2. Then, (w,,-,w,) is a pivotal vector whose
b s/\F‘ s/ﬂ o g’

joint sampling distribution is known to be £,(#), that is, k— variate ¢ distribution with 7

degrees of freedom. Thus it follows by Theorem 4 that the joint posterior distribution of

(wy, +, wy) is also given by ¢#,(7).
Ynd = 7) = (6 D) e 1
Let F=—= e , where X = Z n;x; and =; ) n,-@l- for
n=mn,+ -+ n, From the fact that F is a function of pivotal vector (wy,*, w,), we know

that the posterior distribution of F' is identical to its sampling distribution, and F itself is a
pivotal quantity. Hence the sampling distribution of F is shown to be F(k—1,#) regardles
of 6y,--,8,, since the sampling distribution of F is F(k—1,7) when 6,=:-=86,
Therefore, it follows that the posterior distribution of F is given by F(k—1, 7).

As a final example of this section, we consider the Pareto probability model with a shape
parameter. Although our theorems are restricted to location-scale parameters models, the
following Example 5 shows that our theorems can be applied to find the posterior distribution
of a pivotal quantity from non-location-scale parameters models.

Example 5. (Pareto probability model with a shape parameter)

Let x;,:'",x, be a random sample from Pareto distribution whose distribution function is
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given as follows:
F(x:0)=1—-(Q1+x "% x>0,

where 6>(0 is a shape parameter. Let w=248 21 In(1+x;). Then the sampling

distribution of w is shown to be xZ(Zn) by applying the method of probability integral
transformation (Bain and Engelhardt(1992), p366). Hence letting 7=1/6, 7 can be considered

as a scale parameter for 2 i‘,l In(1+x;). Now assume the prior distribution of & to be
e

(@) o« 1/68, 6>0, so that n(y) o< 1/5, 7>0 by change of variable. Thus it follows from

Theorem 2 that the posterior distribution of w is also given by x2(2n).
4. Concluding remarks

In this paper, we studied the properties of pivotal quantities in Bayesian Statistics, which
say that the results of classical Statistics and Bayesian Statistics may be eventually coincide
by somewhat systematic methods. The applications of them may be considered for more
various problems, and the asymptotic versions of them for more general probability models are
left for a future study.
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