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Abstract

The problem of wavelet density estimation based on Shannon’s wavelets is
studied when the sample observations are contaminated with random noise. In this
paper we will discuss the asymptotic normality for deconvolving wavelet density

estimator of the unknown density f(x) when Fourier transform of random noise has
polynomial descent.
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1. Introduction

Let X and Z be independent random variables with density functions f(x) and ¢ (2),
respectively, where f(x) is unknown and ¢ (z) is known. One observes a sample of random

variables Y;= X, + Z;, , i=1,2,--,n. The objective is to estimate the density function

7(x) where g(y) is the convolution of f(x) and ¢(2), g(y) = f_woo F(yv—2) q(2) dz.

The problem of measurements being contaminated with noise exists in many different
fields(see, for example, Louis(1991), Zhang(1992)). The most popular approach to the problem
was to estimate f(x) by a kernel estimator and Fourier transform (see, for example, Carroll
and Hall (1988), Taylor and Zhang(1990), Fan(1991)). Fan(1991) proved that the estimators of
F(x) are asymptotically optimal pointwise and globally if the Fourier transform of the kernel
has bounded support.

The present paper deals with estimation of a deconvolution density using a wavelet
decomposition. The underlying idea is to present f(x) via a wavelet expansion and then to
estimate the coefficients using a deconvolution algorithm. Wavelet methods, introduced to
statistics by the work of Donoho and Johnstone in early 90’s, show remarkable potential in
nonparametric function estimation(see, for example, Donoho, Johnstone, Kerkyacharian and
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Picard(1995,1996)). There are several important families of wavelets(for example, Haar’s
wavelets, Shannon’s wavelets, Meyer’'s wavelets, Daubechies’ compactly supported wavelets).
In this work we consider a wavelet decomposition based on Shannon’s wavelets rather than
on wavelets with bounded support. Shannon’s wavelets and Meyer's wavelets allow immediate
deconvolution and form a subset of the set of band-limited wavelets, that is, the Fourier
transform of the wavelet has bounded support. Pensky and Vidakovic(1999) proposed the

estimators based on Meyer-type wavelets to estimate f(x) for two different cases in the
well-known Sobolev space H® @ the case when the distribution of the error Z is
supersmooth, that is, the Fourier transform ¢ of ¢ has exponential descent, and the case
when the distribution of the error Z is ordinary smooth, that is, g has polynomial descent.
They showed that, in the case of exponential descent, the linear wavelet estimator (2.7) in

Section 2 1s asymptotically optimal in the sense that the rate of convergence of the mean
integrated squared error can’t be improved. Lee(2001) showed that the linear wavelet estimator

(2.7) is L, strongly consistent when ¢ has polynomial descent or exponential descent. Lee
and Hong(2002) showed that the linear wavelet estimator (2.7) is a uniformly, strongly

consistent estimator of Ax)e H® a>0 when ¢ has polynomial descent or exponential

descent.
In deconvolution density estimation Fan(1991) discussed the asymptotic normality of the
estimator, constructed by kernel and Fourier transform, by assuming either the distribution of

the error Z is ordinary smooth or supersmooth. In this paper we will discuss the asymptotic
normality for deconvolving the linear wavelet density estimator (2.7) of the unknown density

F(x) when Fourier transform g (&) of ¢(z) has polynomial descent. This result can be
considered as the wavelet counterpart to the Fan's ordinary smooth case(1991b) for the kernel
density estimator. Gamma or double exponential distribution functions satisfy polynomial

descent
2. Preliminaries

Throughout this paper we use the notation f(w) for the Fourier transform
f_ e " Ax)dx of a function f(x). We assumed that the reader is familiar with the

elements of wavelet theory(see, for example, Vidakovic(1999)). Assume that f(x) is square

integrable and that ¢ () does not vanish for real & If ¢(x) and ¢ (x), respectively, are a
scaling function and a wavelet generated by an orthonormal multiresolution decomposition of
L2?( —o0, ©), then for any integer m the density function f(x) allows the following

representation:
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flx) = ;Zam,k¢m,k(x) + Ezgmbj,/eﬁbj,k(x) , 2.1)

where @, 4(x) = 2"20(2"% — k) and dix) = 274(2'x — k), and the coefficients

Am,r and b;, have the forms

tmi= [ _omiDADd, b= [ 440 A

respectively.
A special class of wavelets are band-limited wavelets, the Fourier transform of which
have bounded support. In this paper, we shall use a particular type of band-limited wavelet,
Shannon’s wavelets (see Walter(1994)). The Shannon scaling function is

sin x

p(x) = and  ¢(w) = I{_,» (w). (2.2)

A possible wavelet is given by

_ _sin (x—0.5) — sin2a(x—0.5)
#(x) = a(x—0.5) '

The coefficients a,,, and b;, can be viewed as mathematical expectations of the

functions #,, , and v;,

Qo ke = f_mum,k(y)g(y) dy, bj,= f_mvj,k(y)g(y)dy, (2.3)

provided that wu,, ,(y) and wv;,(¥) are solutions of the following equations:
f_mq(y—x) Um p (N AY = @, (%), f_ooq(y—x) v e (¥ dy = ¢;1(x). (2.4)
Taking the Fourier transform of both sides in (2.4), we obtain

U (%) =27 U, (2"x— k), v;,(x) =272 V,(2’x— k), where U,,(+) and V;(-) are the
inverse Fourier transforms of the functions
Un(w) = p(0)) ¢(=2"w) , V(o) = §(w) ¢(~2"w) , (2.5)
respectively. Therefore, estimating a,, , and b;, by

“~

Gop = n" }';12’"/2 U 2" Yi— k), b, = n"! 212"/2 V(2 Yi— A (2.6)
and truncating the series (2.1), we obtain a linear wavelet estimator

-?n (x) = ;Z El\m,k ¢m,k(x) . Q2.7

3. Asymptotic Normality

The main result of this paper is Theorem 3.1 which establishes central limit theorem of

the linear wavelet estimator ?n (x). To discuss asymptotic normality of the estimator, note
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that ?,, (x) is the sum of an iid. sequence. Thus, it is sufficient to show that the usual

triangular CLT conditions hold. A sufficient condition for asymptotic normality
7n(x) —E },(x)
V var( 7,(x))
is that Lyapounov’s condition holds, i.e. for some &> 0,
E \Z,—EZ,*"
7 (var( Z,1)) 1+6/2

where Z,; = ;z 2" U7 Y= B @i ().

-5 N0, (3.1)

0 (32)

The following lemma is used to find a lower bound for var{(Z,,).

Lemma 3.1. (Fan(1991)) Suppose that K, is a sequence of Borel functions satisfying
K,(»)—K(y) and sup, |K.(»|<K'(y),
where K'(y) satisfies

[ K (v (oo and lim IyK*(9)] =

If x is a continuity point of a density f, then for any sequence k,— (0, we have

L [ R0y =1 [ KO,

neo My,

Theorem 3.1. Let X and Z be independent random variables and Y=X+Z7. Assume
that (i) g(w) @® — ¢(#0) as @ — ©,8=0 and ¢(w) does not vanish for all real we R,

(i) 2" — o0 and 2™/m — (0 asw — oo, (iii) g is continuous at x. Then,

7. () —E 7,(x) .’
V var( 7,(x))

Proof. From the Fourier inversion formula and (2.2),

E(Zzl) — E(zzzm/Zgo k(x) 271,—1 Oo ,\ZLLCUZ em(z”y,—k) d(l))
? = ™ - q(—2"w)

N0, 1).

2

2

- zsz_mm( —21_” f”,r q(_l_w2 — ( ;‘z “H o(2"x— k) )a’w) &(y) dy. (33)

Note that {e™, k=Z} is a complete orthogonal system on L,[— 7, 7]. Hence,

‘(‘b(__w) e—in"’x — ;Ze—ikw qo(zmx_k)
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9\ om & 1 (" ein"’(y—-x) 2
and E(an) - 2 f—co ( 27T f_” 'qv(__zmw) d(l)) g(y) dy.

Then, by Lemma 3.1 and the same procedure in Fan(1991), we can obtain that for
sufficiently large n

. T . 2
BZy) =27 g [ gk [[of e a0 ay

2mc
9 m(1+28) .{(x) r 28
= ol dw A4
2nc? f —nt ! (3.4)
by Parseval’s identity. We can also show that, by Fubini’s theorem and Parseval’s identity,

tw( 2%y — k)

EZy) = 2,27 oms®) [ (5 [ 2L d0) o) ay
_ ~m/ e L NQQ— szz ~ Twkf2™
- ;22 2¢m,k(x) f_oo 2z 5(600)) g(a)) e k2 dw
= ;Z Am b2 %) — f(x) as n— o,

Similarly, for sufficiently large n, we can get
E |Zy—EZ,|**°

. o
~ (O, 9 M™1+6+26+38) f 28 g
12 gx) | o™ do.

E lZnI —EZnI, +o
n6/2 (UCZ?’(Z,,I)) 1+ 6/2

0 if 2"/n — 0.

Therefore,

Even though we obtain asymptotic normality for a wavelet density estimator, it still

involves the unknown quantity wvar( 7,(x)). Thus we will replace it by sample variance. In

the following corollaries A(x) belongs to a Sobolev space H% @>(0. Such spaces are
characterized by their Fourier transforms to be all tempered distributions whose Fourier
transform is a locally bounded and integrable function satisfying

[T IR 4+ 0 do oo,

Lemma 3.2. Under the assumptions of Theorem 3.1,
3 2/ (nEZL) —F 1.
Proof. By the weak law of large numbers(Chow and Teicher, p.340), it is sufficient to show
that for all > 0,

1
EZ% E(Z%‘II[Z% > enezy1) = 0. (3.5)

By repeating similar calculations, we obtain for sufficiently large n
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Zal? = 27| 2 oD U2 V=R 2 < C 270 7 10)% do,

Then, by(34), Z4/(nEZ%Y) — 0 if 2"/n— 0 as n — o,
and hence (3.5) holds.

—m

—~1/(1+28+2a) ) and

Corollary 3.1. Under the assumptions of Theorem 3.1, if 2 = o(n

Ax)ye H, a>0, then

Vau( 7,(x) — f(x)

L
5 ~L N, ),

where S% = n°! ,2:1 7
proof. For sufficiently large n,
var( F,(x)) = -%l—var(Z,,l) = % 21420 () f_”” lw* dw .
Let f(x)€H'. Then by Lemma 3. of Walter(1999), | 2, @mem(x) —f(x)| <A27™.
Thus by Lemma 3.2, )
Va( 7,0) =) _(_ 2@ —EL® |, Ej® -/ )X\/%TZ,T)X\/_EZ—%
S V var( 7,(x)) V var( 7, (x)) EZ, s,
-5 N0, 1),

it 9mU*2¥2) 1 00 a5 n — 0,

Lemma 3.3. Under the assumptions of Theorem 3.1, if 2™ = o(% ™% )  then
1 o N
L ¥z, - Ez) ~" 0

Proof. When n is sufficiently large,

PUL 2 2, EZ,1 de]
=1

m(1+28) r
< S 2 4 f l0l* dw
& n -
— 0,

if 2"1%2/y 0 as n— oo.

Corollary 3.2. Under the assumptions of Theorem 3.1, if 27" = o(p ~HAF2ET2D Y

2" = o(nV1+2A Y and Ax) € H% a0, then

Va ( 7,(x) — £(x))

L
2 MO, D),
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2
where S% = n~! ;21 ZE — (n7! ;ﬁ——:l Zy) .

proof. By Lemma 3.3 and Corollary 3.1. it follows.

Remark. In the wavelet framework 2~ ™ plays the role of usual window #, and hence the

wavelet scale m is very important. In fact, it is not true unless 2~ ™ tends to 0 sufficiently
slow as the above theorems indicate.

Example. Let Ax) € H® and ¢(x) = 05ae ™ the probability density function of a
double exponential distribution. For example, if A x) is the normal p.df with mean gz and
variance ¢, Ax) e H° @>0. Since ¢lw) = (*w*+1) "', g has polynomial descent.
Thus under the assumptions of Corollary 3.2 with B=2,

Vi ( Fa(®) — (%))
Sa

2
—L M0,1), where $2 = »7! ;Z:l Z2 — (n! ]5;1 Z,) .
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