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Confidence Intervals for the Median Survival Time
under Proportional Censorship

Seong Hwa Jeong!) and Kil Ho Cho?)

Abstract

In this paper, we demonstrate the more accurate confidence intervals for median
survival time under the simple proportional hazard model of Koziol and Green (1976)
via the Edgeworth expansion for the distribution of the studentized ACL estimator
derived in Jeong (2000). The numerical results show that the intervals, so-called
test-based and reflect intervals (Slud et al., 1984), outperform normal approximating
method in the small sample sizes and/or heavy censoring.

1. Introduction

Two important models in survival analysis are a general random censorship model and the
simple proportional hazard model of Koziol and Green (1976). The difference between the two
models is the way in which the lifetime variable is censored. The former allows the lifetimes
to be censored by a non-informative way and the latter has an informative way in which the
survival function of censoring variable is some power of the survival function of lifetimes.

In this field of statistics, confidence intervals for median survival times are frequently
presented to characterize the survival experience of a group of patients. Typically such
intervals are constructed by a consistent estimator with asymptotic normality but the common
weakness of these intervals appear to lie in accuracy, since the standardized quantities are
often quite skewed and biased for small sample sizes and heavy censoring. Efron (1981)
proposed the bootstrap method that provided an alternative procedure for constructing
nonparametric confidence intervals. The bootstrap methods often work reasonably well, but it
is computationally intensive. Then many researchers have been interested in the nonparametric
methods of constructing confidence intervals for the median survival time that avoid these
problems based on the first-order normal approximation (Brookmeyer and Crowely, 1982;
Emerson, 1982, Jennison and Turnbull, 1985). Slud, Byar and Green (1984) compared the these
intervals for median survival time under the headings of test-based and reflected intervals,
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and showed that test-based intervals have less than nominal coverage in small sample
through the simulation. '

Higher order asymptotic method is the other way to improve a small sample performance.
Many techniques have been devised to increase the accuracy of the approximation of the
exact distribution of statistics. A well known method is to use the first few terms of an
Edgeworth expansion. Recently, some important progresses have been accomplished in the
way of producing accurate approximations to the distribution of censored data. For the general
random censorship model, Lai and Wang (1993) provided general Edgeworth expansions for
the true and bootstrap distributions of an asymptotic U-statistic and derived an Edgeworth
expansion for distribution of standardized Nelson-Aalen (NA) estimator. Strawderman and
Wells (1997) extended the results of Lai and Wang (1993) to the studentized NA estimator
and Strawderman, Parzen and Wells (1997), using Edgeworth expansion, proposed the new
test-based and reflect confidence intervals which was very simple to compute and showed
that new test-based interval outperforms commonly used methods for computing confidence
intervals for small sample sizes and/or heavy censoring.

For the simple proportional hazard model, Cho and Jeong (2000) and Jeong (2000) derived an
Edgeworth expansion for the distributions of nonparametric maximum likelihood estimator
(ACL estimator) of survival function and showed that the results are applied not only true
distributions of the statistics but also for those bootstrap distributions,

In this paper, we derive more accurate confidence intervals for median surviaval time using
the specific formula for the Edgeworth expansion of the studentized ACL estimator and then
compare the coverage probabilities and average lengths for these confidence intervals through
the Monte Carlo simulation.

2. Model Specification and Edgeworth Expansion
2.1 Simple Proportional Hazard Model

Let Ty, Ty,--, T, be independent and identically distributed (i.id.) random variables with a
continuous distribution function F. These are censored on the right by the iid random
variables C;, Cy, -, C, with a continuous distribution function &, so that the observations
available consist of the pars X;=(Z;,8;) for i=1,,n, where Z;= T;AC; and
8;= I(r.<c,. Here and in the sequel, a/\b= min(q, b) and I, denotes the indicator
function of the event A.

In the usual genera] random censorship model one assumes that the lifetimes and censoring
sequences are independent. Inferences under this model focus on the estimation of the survival

function F(¢)=1—F(#) via Kaplan-Meier (KM) estimators (Kaplan and Meier, 1958). If
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censoring is informative, ie. if the survival function G(#)=1—G(¢) of the censoring

variables carries additional information about F(¢), the efficiency of KM estimator is lost.
One such example is the simple proportional hazard model (KG model). The additional
condition that let us to the KG model is

G(t) = [F(H]*,  0<#coo, @.1)
where A is a positive constant which is called censoring parameter. This proportional
censorship model is characterized by the independence between Z and & (Armitage, 1959).
Then letting H denote the distribution function of the observable Z;’s and H(t)=1—H(t)

the corresponding survival function, it is easily proved that

F(t) = [HWDOIY, 0<too, (2.2)
Moreover, in the KG model, 4= —171*_7 is the expected proportion of uncensored

observation, ie. = P(8,=1). The case A=0 (8 =1) corresponds to no censoring and

the expected number of the censored observations increases as A increases. The equation (2.2)
motivates the ACL estimator for survival function (Abdushukurov, 1984; Cheng and Lin, 1984,
1987)

F.(t) = [ H,(O1" 0o, (2.3)

where H, ()= % ZII(ZM) and 6,= % 2}8,- are the empirical counterparts of H(¢)

and 8, respectively. Abdushukurov (1984) and Cheng and Lin (1984, 1987) have also
investigated the asymptotic properties of the ACL estimator and showed that in the KG model
the ACL estimator is asymptotically more efficient than the KM estimator.

In subsequent development, to get the asymptotic confidence interval for F(¢) at fixed

time, we can obtain a variance estimator 0,°(¢) as follows:
0,2(¢) = 6,} 0 H,()I* 'H()+6,1— 6, H,()]1*[In H,(+)]*. (2.4)
Then by the strong law of large number we can see 8, — 8 a.s. and H,(t)— H(t) a.s.

as n — . Thus ¢>(¢) — &°(¢) a.s. as n — o,
2.2 An Edgeworth Expansion for the ACL Estimator

Let @(- ) and ¢( -+ ) denote the standard normal cumulative distribution and probability
density function. For a fixed time point f and any z € R, define

w2 (F,(t)—F())
o.(t)

where  0,2(¢) is defined in (24). Jeong (2000) devised an Edgeworth expansion for

K,(z;t) = P <z}, (2.5)
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K,(z;t) and showed that uniformly for z€ R

¢ ¢ t _
szo==¢z——£%%£—n+ f%)— ;ﬁ§]+om1x 26)

where p;(t), j=2,3 and p,(t) are the bias- and skewness-corrected term of the usual

normal approximation to the distribution of the studentized ACL estimator (see Jeong (2000)).
Using a one-term Cornish-Fisher expansion, the 100ath percentile of the distribution of the
studentized ACL estimator is

03(t) uo(t) 05(1)
6;1/2 (23“1)+ ;1/2 - 2;1/2

where @(z,)=a. The right-hand side of (27) is equal to 2z, plus O(n~Y%).

K% a;t) = 2z, + + 0(nY), 2.7)

Incorporating the next term into an approximation for K, 1(af; t) helps account for the bias
and skewness arising in finite samples, thus yield a more accurate approximation to the 100«
th percentile of the distribution of # Y2 ( F,(t)— F(¢))/ 0,(t). Suppose we define

at) = Fﬁn——xfu—am)jﬁf 28

T‘n EX (
Then

P{FAH—KTH—aJ%%%lz?Nﬂ}

P{ F. (a;t)= F(1)}

w2 (F,()=F ()
P[ o.(t)

=1- K,(K,"(1—a;1))

2K;1(1—a;t)]

= q
and thus ?,,Ex(a; #) denotes an upper 100ath confidence limit for F(¢).

If we substitute (2.7) into T‘MEX(a; t), we obtain

_ — o5(t)
F,"(a;t) = F,(t) - (21—a+ ﬁ(ﬁ—a—l) + L7

(1) (¢) W(1)
£ gi”?) Gn”z . (29)

3. Confidence Intervals for Median Survival Time

Brookmeyer and Crowely (1982) proposed the test-based interval for median survival time

{t:18(¢) = 0.5] < z21_ap &s(B) }, (3.1)

where S(t¢) is the KM estimator of survival function, and %Sz(t) is Greenwood's formula
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for the variance of S(#). The interval (3.1) can directly be applied to ACL estimator of
survival function in KG model, since #( F,(¢t)— F(t))/0,(t) is normally distributed.

Thus we obtain
I = {t: F(tys) e [C(a/2;t), C(1— a/2;D)]}, (3.2)

— o\t . .
where C(a;t)= F ,,(t)—zl_,,—n%‘z‘)‘. An advantage of test-based interval is that the

density function of the lifetime distribution need not be estimated. However, the interval (3.2)
is obtained wusing a first~order normal approximation of studentized statistic. The
appropriateness of such interval for small sample sizes or under heavy censoring is suspect.
Thus we can obtain more accurate confidence limits for median survival time using
Edgeworth expansion that are summarized in theorems given in Jeong (2000). We may use
the results of section 2.2 to improve upon (3.2). Define

L = {t: Flyys) e[ F. T (2;0, F,"U-a2;0]} (3.3)

EX( - ;t) are theoretically

where f‘nEX(a; £) is defined in (2.9). The interval endpoints F,
more accurate than those used to compute (3.2) since I, match the corresponding exact

endpoints to O(z ~¥2) instead of O(% ') on the survival function.
Slud et al. (1984) proposed a transformed-reflected confidence interval in terms of the

cumulative hazard function for median survival time. Let 2‘0_5 = inf { t: F,,(t) < 0.5}
denote an estimate of median survival time {#;5 based on the ACL estimator. Then this

interval can directly be applied to ACL estimator of survival function. Thus we can construct
the reflect interval for median survival time as follows:

I = {t: F,(t) € [Cla2; {5), CU—a/2; ts)]}, (3.4)
where C(a;t)= F,(t)— 21— T Next we can also obtain more accurate confidence

limits for median survival time using the expansion (2.9); In particular, define
I = {t: Futye| F@2; bs), F50—a2; b)), (35)

where FnEX(af; t) is defined in (2.9).
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We now distinguish the general notions of the test-based and reflect intervals for median

survival time. Suppose that for a fixed time point #, { F, (1), _Fz(t)} is a 100(1—a)%
confidence interval for f‘(t). We describe the test-based confidence interval of the form s

[t: 0.5 e { Fi(), F,(t)}], while the corresponding reflect interval is
[t: Fo(¢) € { Fi( kys), F2( hos) )]

Figure 3.1 is graphically seen the difference between these two confidence intervals (Slud

et al. (1984)). The test-based interval requires knowledge of F;( -) and F,( ) at many
time points. The lower limit, 7, is the time ¢ at which ?l(t) = (0.5, and the upper limit,
T, is that at which F,(t)=0.5. By contrast, the lower endpoint, R;, of the reflect
interval is obtained by horizontally projecting the upper confidence bound T‘g( 20_5), until it
meets ?‘( -); the ¢ corresponding the meeting point is taken as R,. An analogous
procedure using —Fl( 2‘0.5) defines R,. Then the reflect interval requires calculation of

F,(t) and F,(t) only at t= by s .

PROBABILITY OF SURVIVING

T
T, R

4]
Ry T

~

tos

Figure 3.1 Graphic representation of test-based and reflect intervals. 7 are endpoints of

test-based interval; R; are endpoints of reflect interval.
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4. Simulation Study

In this section, we consider the performance of the confidence intervals for median survival
time through the Monte Carlo simulation.

We assume that the distributions of lifetimes are Weibull ( Weib(a, b)) whose probability
density function is the form

At) = abt™ e, 0 <t oo,
where ¢> (0 and b> (. The parameters of lifetime distributions are considered a = 1.0
and b = (.7 (decreasing failure rate), b = 1.0 (constant failure rate) and & = 1.5 (increasing
failure rate). Since the lifetimes are subject to be censored to the right and the survival
function of censoring time is some power of the survival function of lifetime, we set the
censoring times are also distributed as an Weibull distribution whose parameter is selected to
make censoring rate to be 20%, 30% and 50%, respectively. And we construct confidence
intervals for median survival time for sample sizes of % = 20,30 and 50 and nominal
coverage levels of 90% and 95% based on 10,000 replications.

We investigate the coverage probability and average length for their confidence intervals.
For a given a level, the confidence intervals should have coverage 100(1—a)% . And the
better confidence intervals have the shorter average lengths.

Table 4.1-4.3 show the coverage probability and average length at the median survival time.
We can observe that the coverage probabilities of all intervals achieve the nominal coverage
levels as #» increases and the censoring rate decreases. And the average lengths are shorter
as #» Increases and the censoring rate decreases. For all types of censoring, all average
lengths decrease as the lifetime hazards changed from decreasing to increasing. Table 4.1
summarizes the results for the survival time distribution with decreasing failure rate

( Weib(1.0,0.7) ), Table 4.2 summarizes those for constant failure rate ( Weib(1.0,1.0) )
and Table 4.3 summarizes those for increasing failure rate ( Weib (1.0, 1.5) ).

From Table 4.1, in the case of test-based intervals we show that I, is closer to the
nominal coverage probabilities than the I;. But the average lengths of /I, is slightly longer
than that of the Ij, particularly, in the case of small sample or heavy censoring. In the
reflect intervals, I; is also outperformed the I3 in most cases. From the Table 4.2-4.3, we

can see almost equal results given in Table 4.1.
So, our simulation study shows that the confidence limits using Edgeworth expansion are
more accurate approximation to median survival time than those using the first-order normal

approximation and that 1; is superior to all others considered in terms of maintaining

coverage accuracy, being very close to nominal levels in all cases.
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Table 4.1 Comparison on the coverage probabilities and average lengths for the decreasing

failure rate at the median survival time ( F~ Weib(1.0,0.7) )

Test-based Interval

Reflect Interval

Censoring Sample 7 I I
. a 1 3 4
Rate(%)  Size
Coverage Length  Coverage Length  Coverage Length Coverage Length
20 0.05 09345 1.1466 09585 1.3836 0.9529 1.2568 09472 1179
0.10 0.8769  0.9521 09103 1.1052 09085  1.0347 0.9053  0.9960
10 30 0.05 09374 09165 0.9580  1.0682 0.9558 0.9699 0.9548 0.9555
- 010 0.8799 0.7512 0.9087 0.8534 0.8987 0.7966 0.9031 0.7551
50 0.05 0.9400  0.6960 09565 0.7663 09526 0.7241 09517 06893
0.10 0.8887 0.5797 0.8998 0.6093 0.8989 0.5934 0.9010 0.5842
20 0.05 0.9210 1.2760 09631 15671 09579 13285 0.9534 1.3327
0.10 0.8762 1.0566 09219 1.2723 0.9021 1.0907 0.9013 1.0931
30 30 0.05 0.9380 1.0078 09598 1.1533 09533 1.0373 0.9496 1.0289
0.10 0.8765 0.8071 0.9139 0.9108 0.8978 0.8306 0.8981 0.8296
50 0.05 0.9411 0.7437 09549 0.7821 09521 0.7431 0.9482  0.7500
0.10 0.8860 0.6133 0.9100 0.6461 0.8983 0.6174 0.8984 0.6167
20 0.05 09191 1.4670 09628 1.7380 0.9610 1.5530 09591 1.5598
0.10 0.8583 1.1990 09233 14755 09229 1.2666 09196 1.2801
50 30 0.05 0.9298 1.3078 0.9600 15732 09608 1.2289 09575 1.2272
0.10 0.8766 1.0615 09214 1.2371 0919 1.0061 0.9145 1.0090
50 0.05 0.9376  0.8970 09588 1.0378 0.9540 0.8704 0.9537 0.8729
0.10 0.8873  0.7306 09116 0.8136 0.9128 0.7083 0.9070  0.7260
Table 4.2 Comparison on the coverage probabilities and average lengths for the constant
failure rate at the median survival time ( F~ Weib(1.0,1.0) )
Test-based Interval Reflect Interval
Censoring Sample I’ I I
. a 1 3 4
Rate(%)  Size
Coverage Length  Coverage Length  Coverage Length Coverage ILength
20 0.05 0.9348 0.8780 09589  1.0241 0.9530 0.9549 0.9491 09238
0.10 0.8302 0.7322 09122 0.8371 09112 0.7946 09049 0.7757
10 30 0.05 0.9334  0.7086 09551  0.8059 0.9487 0.7492 0.9499 0.7510
0.10 0.8761 0.5852 09084 0.6552 0.8965 0.6199 0.8969 0.5978
50 0.05 0.9422  0.5503 09548  0.5990 09546 05741 0.9457 0.5529
0.10 0.8890  0.4606 09016 0.4811 0.8993 0.4725 0.9001 0.4684
20 0.05 0.9245 0.9398 09636 1.1220 0.9534  0.9900 0.9504 0.9993
0.10 0.8770  0.7953 09252 0.9357 0.9048 0.8271 0.9045 0.8305
30 30 0.05 09324 0.7639 0.9622 0.8639 09541 0.7961 0.9477 0.7878
0.10 0.8712 06210 0.9081 0.6936 0.8922 0.6433 0.8901 0.6434
50 0.05 09381 (0.5787 0.9585 0.6085 09474 05643 09494 0.5876
0.10 0.8853 0.4831 0.9051 05078 0.8987 0.4897 0.8950 0.4830
20 0.05 0.9209 1.0395 09617 1.2222 0.9600 1.1299 0.9566  1.1404
0.10 0.8572 0.8616 09266 1.0488 09177 09276 0.9127 0.9421
50 30 0.05 09254 09167 09595 1.0925 0.9541  0.9069 0.9537 0.9056
0.10 0.8711 (.7638 09158 0.8725 09154 0.7514 09124 0.7542
50 0.05 09394 0.6748 0.9560 0.7652 0.9536 0.6689 0.9535 0.6693
0.10 0.8900 0.5541 0.9094 0.6121 0.9121 0.5504 0.9075 05604
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Table 4.3 Comparison on the coverage probabilities and average lengths for the increasing

failure rate at the median survival time ( F~ Weib(1.0,1.5) )

Test-based Interval Reflect Interval
Censoring Sample 7 I I I}
. a 1 2 3 4
Rate(%6)  Size

Coverage Length  Coverage lLength  Coverage Length Coverage Length
20 0.05 09319 0.6334 09596 0.7194 09533 0.6875 0.9464 0.6830
0.10 08751 0.5297 09145 0.5962 09086 05764 0.8963 0.5695
10 30 0.05 09395 0.5234 09592 0.5841 09548 05539 09473 0.5620
0.10 0.8839 0.4334 09103 0.4812 09047 0.4588 0.8986  0.4478
50 0.05 09412 0.4088 09553 0.4412 09510 0.4275 0.9496 0.4166
0.10 0.8910 0.3441 09036 0.3573 0.9006 0.3539 0.89099 0.3523
2 0.05 0.9207 0.6603 09644 0.7771 09457 0.7044 09567 0.7157
0.10 0.8743 0.5635 09211 0.6559 0.8946 0.5921 0.8945  0.5957
30 30 0.05 0939 0.5503 09612 06186 09461 05796 09515 05715
0.10 0.8769  0.4502 09144 05020 0.8971 0.4691 0.8981 0.4695
50 0.05 0.9380 0.4262 09563 0.4488 0948  0.4332 0.9498 0.4345
0.10 0.8854  0.3562 0.9101 0.3749 09012 0.3629 0.9011 0.3621
20 0.05 09168 0.7146 0.9638 0.8416 09595 0.7974 09611 0.8106
0.10 0.8605 0.6012 09209 0.7224 09232 0.6582 09201 0.6707
50 30 0.05 09338 0.6398 09610 0.7542 09584 0.6533 0.9580 0.6510
0.10 0.8820 05371 09151 06121 09154 05418 09137 0.5441
50 0.05 0939  0.4861 0.9605 0.5483 09478 0.4899 0.9483  0.4898

0.10 0.8885  0.4027 0.9096  0.4426 09112 _ 0.4055 0.9084 04111
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