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Abstract

This article is concerned with an effective algorithm for the identification of
multiple outliers in linear regression. It proposes a hybrid algorithm which employs
the least median of squares estimator, instead of the least squares estimator, to
construct an initial clean subset in the stepwise forward search scheme. The
performance of the proposed algorithm is evaluated and compared with the existing
competitor via an extensive Monte Carlo simulation. The algorithm appears to be
superior to the competitor for the most of scenarios explored in the simulation study.
Particularly it copes with the masking problem quite well. In addition, the orthogonal
decomposition and its updating techniques are considered to improve the computational
efficiency and numerical stability of the algorithm.

1. Introduction

It is advisable to assess the presence or absence of any outliers, and then to identify them
correctly prior to the regression analysis. A number of procedures have been developed for the
identification of regression outliers. Some of the direct procedures are mainly based on the
residuals from the least squares (LS) fit. For instance, Tietjen et al (1973) suggest using the
maximum of the absolute residuals as a diagnostic measure, and provide critical values based
on the simulation. But outliers may cause a poor LS fit and hence distort the residuals since
the LS estimation accommodates the outlying observations at the expense of other points.
Other procedures are based on the principle of deleting one observation at a time. Those
procedures, however, work well only when the data set contains single outlier because they
are affected by the outliers which are to be identified. Marasinghe (1985) employs the
sequential application of deleting-one scheme to choose candidate outliers. But it requires to
determine the number of outliers in advance and suffers from the masking and swamping
effects. Kianifard and Swallow (1990) propose a forward search procedure which is based on a
deleting-one method and recursive residuals. However it turns out that the procedure is also
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susceptible to the masking effect.

The principle of single-deletion has been extended to the procedures for multiple outliers to
cope with the masking and swamping problems. The most common procedures for the
multiple-deletion construct all possible subsets of observations and test whether the
observations in a subset are outlying significantly relative to the remaining observations.
However, the drawback of them is that a great deal of computation is required since they
have to check all possible subsets.

On the other hand, the indirect procedures based on the robust estimators have been
suggested for the identification of outliers (see e.g. Rousseeuw and Leroy (1987)). Rousseeuw
and Zomeren (1990) suggest a diagnostic measure that is based on the Mahalanobis-type
robust distance with the minimum covariance determinant (MCD) estimators of the mean and
the covariance matrix. They propose a display in which the standardized residuals from a high
breakdown point fit, such as the least median of squares (LMS) and the least trimmed sum of
squares (LTS), are plotted versus the robust distances. The plot makes it possible to classify
the data into regular observations, vertical outliers, and bad leverage points. However, the
cutoff values are chosen by somewhat arbitrary way since the distribution of LMS residuals
is not known for small samples. Also, this approach tends to swamp too many of
observations because of its high robustness.

Hadi and Simonoff (1993) suggest an effective direct algorithm H-S which employs a
forward search scheme. The algorithm starts with constructing a basic clean subset with the
observations corresponding to the smallest absolute value of the adjusted residuals from the
LS fit. Then the basic subset is iteratively increased, on the basis of the absolute scaled
residuals, to the initial clean subset of specified size. After an initial subset is formed, this
algorithm updates the subset iteratively until the final clean subset is obtained. This uses the
internally studentized residual and the scaled prediction error as diagnostics for reforming the
subset, and tests the outlyingness of the observations relative to the clean subset. However,
H~S appears to fail in the presence of multiple outliers which are clustered in an outlying
cloud far from the main bulk of the data.

This article is mostly concerned with an effective identification algorithm which is improved
in terms of the computational efficiency and numerical stability. As an attempt to modify H-S
algorithm, we suggest a hybrid algorithm which constructs the initial clean subset based on
the LMS estimator, and then increases the clean subset size one at a time by either adding
one observation or exchanging several observations. In Section 3, the updating techniques of
the orthogonal decomposition are suggested to reduce the computational burden that may be
increased rapidly with the data size. The performance of the proposed algorithm is evaluated
and compared with H-S algorithm in Section 4.
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2. Proposed Algorithm

Consider the standard linear regression model y=XpB+ €, where y is an #n vector of
responses, X is an #Xp matrix of regressor variables with intercept, B is a p vector of

regression coefficients, and € is an # vector of random errors.

Construction of initial clean subset : Since the algorithm H-S is totally based on the LS
estimator, it is not guaranteed to cope with the masking problem when a data set has many
severe outliers. In particular, the basic or initial clean subset may not be constructed
appropriately since the LS fit is strongly affected by the outliers. It is found, in several data
sets with multiple outliers, that H-S can not detect the outliers correctly. Consequently, the
central question i1s whether more clean initial subset can be obtained even if the masking and
swamping effects are present in the data set. Thus, a new algorithm is instead proposed for
constructing the initial clean subset.

The proposed algorithm is a variant of H-S algorithm, but it employs the LMS estimator
which has very high breakdown point. (Statistical properties and algorithms of the LMS
estimator can be found in Rousseeuw (1984), Basset (1991), and Kim (1996).) The algorithm
employs a single-phase approach to find the initial clean subset, whereas H-S algorithm uses

a two-phase approach. Let C; denote the set of indices of the observations in an initial clean
subset that can be presumed to be free of outliers. While the H-S algorithm starts with a
basic subset of size p+1 and increases the subset by one observation until it constructs the
initial clean subset of size [ (#n+ p—1)/2], the proposed algorithm constructs the initial subset
Cy of size n—[n/2]+p—1 corresponding to the smallest absolute standardized residuals
from the LMS fit. (The initial subset size is chosen on the basis of the exact fit property of
the LMS estimator.) This approach makes it possible to form the appropriate clean subset
even though the masking and swamping effects are serious.

Test for outlyingness : After an initial clean subset is constructed, this algorithm
performs a stepwise forward search, which is suggested by Hadi and Simonoff (1993), to
separate the data into a subset of clean observations and a subset of potential outliers. That

is, it updates the subset C, iteratively until the final clean subset is obtained. The internally

studentized residuals and the scaled prediction errors based on the clean subset are used as

criteria for the inclusion and deletion of observations. Let X and yc be the current subset

of observations indexed by C. And provided that X, is of full column rank, let ﬁ\c and

?722 be the LS estimator of B based on the observations in the subset X and y. and

the corresponding residual mean squares, respectively. (If the subset X is not of full column

rank, we may increase the subset by adding observations according to their ordered
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diagnostics until it becomes a matrix of full rank.) Tests are performed whether the potential
outliers are significantly outlying relative to the clean subset as follows. For the observations

in the «clean subset C, the internally studentized residuals |y,— x; Tg\cl/
loc{1— %, (X' X0 ' x; ) 21 are compared with the critical value. On the other hand,
for the observations in the potential outlier subset —C—‘, the scaled prediction errors
lyi— x; 73\0 l/Tae {1+ ' (Xc'Xo) ! x; } Y] are compared with the same critical value.

It is known that those statistics follow ¢ distribution with ¢—p degrees of freedom, where
¢ denotes the size of current subset C. Therefore, utilizing the Bonferroni approach we can

set the percentile t#,.+n(c—p) as the critical value for the (c+1)th largest diagnostic. If

the diagnostic is not significant, then one observation corresponding to the (c+ 1)th largest

diagnostic is chosen to be included in the new clean subset. At the final iterate, the

observations which are included in the complementary subset C are regarded as the outliers.

Of course, if the final subset C is a null set, then we declare that the data set has no
outliers. The detail steps of the proposed algorithm K-K are illustrated in the following.
Algorithm K-K : <Step I> Find the #n—[#n/2]+p—1 smallest absolute standardized

residuals from the LMS fit. Then construct an initial clean subset C; with the corresponding

indices of the observations. Set C=C; and c= n—[#n/2]+p—1.

<Step 2> Compute the following diagnostic measures from the LS fit,
lec |/ { oc(1—he)?}  for ieC

lec|/ { oc(1+he) ™} for ieC
where €c,=¥i— x,-'??\c and hC,-= xi'(XC’Xc)—l X;.
<Step 3> Arrange the observations in ascending order according to &;. Let 5?“1) denote

the (c+1)th largest value of the &. If Ecyp = tyae+n(C— D), then declare all
observations corresponding to &; (j=c+1) as outliers and stop. Otherwise, go to step 2

with a new subset C including the index corresponding to E‘(‘Cﬂ). Stop if ¢+1=mn, and

declare that no outliers are in the data set.
3. Computational Aspects

The orthogonal decomposition approach can be employed to deal with the numerical
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instability problem which may occur at each iterate of the algorithm K-K as well as H-S.

The full column matrix X can be decomposed as X=@Q [T : O], where @ is a

¢X ¢ orthogonal matrix, 7 is a pXp upper triangular matrix, and O is a (c—p)Xp zero
matrix. Let Q@ yc¢ =[ a’ oa’ ] where a; is a p vector and a, is a c—p

vector, and let W= T"! w, =W’ x; for simplicity. Then the statistics at the second step

of the algorithm can be computed as follows,
Bo= Wa, oc=1{ ay a/(c—p)}"?

Q0 a,’ ', he= w;” w;, for ieC
€c, = )

i J—

vi— x; Way, hc= x; WV’ x; for 1 C

where ( is a p vector of zeros.

However, a great deal of computation is required since the matrix € and 7T have to be
computed at each iterate of the algorithm. Moreover, the computational cost may escalate with
the size of data set. Therefore, it is necessary to make some improvement in the
computational efficiency of the algorithm. Kim and Kim (1997) have found that a few
observations are changed at the forward search scheme, moreover at many iterates only one
observation is added to the previous clean subset. Thus, in order to improve its computational
efficiency, we may employ the updating techniques of the orthogonal decomposition in two
cases of the deletion and addition of observations.

Addition of observations : Let X, denote new matrix in which a row is augmented to

the matrix X, and define the orthogonal matrix &, as follows

x,c+l
where R=[T7T":0']’, and 0 is a ¢ vector of zeros. Now by applying Givens rotations to
the elements in the last row of @;X,, we can obtain upper trapezoidal matrix can be

updated as follows

Gc+l,t) Gc+1,1Q+’X+ =

where G;; denotes the Givens rotation matrix operating on rows ¢ and j. Therefore, the
orthogonal matrix and upper trapezoidal matrix can be updated as follows

Q@ =Gerrp Gorr1 Q4



296 Bu-yong Kim, Hee-young Kim

P’: Gc+1,p Gc+l,1

X c+1

Additionally, this updating approach can be easily extended to the case of addition of
multiple observations. Suppose s rows are added and they are augmented to the matrix R
accordingly. To make the matrix upper trapezoidal, Givens rotations have to be operated on
the rows. Then by left-multiplying

..................

by the rotation matrices, we can obtain updated matrices as follows.

5’ = (Gc+s,1> Gc+s,1)"' (Gc+1,p Gc+1,1) Q++’,

fﬁ = (Gc+s,p Gc+s,1)"‘ (Gc+1,p Gc+1,1) x'.c+1

x ’ ct+s
Deletion of observations : Let X _ denote the submatrix reformed after the last row x.

is deleted from the matrix X.. Then the matrices @ and R are partitioned

Q,: b T
............ X
a i h e =0
............ x,
Q, : d 0

where Q) is a pX(c—1) matrix, @, is a (¢c—p—1)x(c—1) matrix, b is a p vector, d
is a ¢—p—1 wvector, a is a c¢—1 vector, and h is a scalar. By a Householder
transformation, d is transformed to zero vector and hence a@’, % and @, are modified

accordingly, but @, &, and the right-side are not changed as follows,

Q b T
o :\ X_ ......
a R oL e =10
e x| |
0 0 0

Next by applying Givens rotations, & 1is transformed into zero vector and hence

@, 2', h,T and 0 are modified accordingly, but @\2 and O are unchanged as
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Qi 0 T*
............ X_
a*' h* ...... —_ w’
;-\- --------- xc, ......
Q 0 0]

Since the left-side matrix is also orthogonal, the rows and columns are clearly of unit

Euclidean length. Therefore A= +1 and a '= 0’ that is,

QT 0 T
............ X_
0 *+1 = tx
:\- --------- xcl ------
Q, 0 0

Now removing the ( p+1)th column and ( ¢+ 1)th row from the orthogonal matrix of

left-side, and also removing the ( p+ 1)th column from the right-side matrix, we obtain the

updated matrices as @ = | e , R =

where Q)= G, G Q, T =G, G+ T, Qo= Hy 1@ and H,

denotes the Householder transformation operated on the c¢-th column with pivoting ( p+ 1)th
position.
In addition, when multiple rows are deleted from the matrix X, the updating of orthogonal

transformation can be performed by operating the above steps to the rows repeatedly.

4. Comparisons of Performance

Hadi and Simonoff (1993) have conducted Monte Carlo experiments to compare the power of
the procedures, and shown that their algorithm with method M1 is the most effective one for
the identification of outliers. Recently, Wisnowski et al. (2001) validate that H-S algorithm is
effective when the residual outlying distance is large. In this article we also perform Monte
Carlo simulation studies to figure out the effectiveness of the proposed algorithm. The
performarice of the algorithm is evaluated and compared with H-S on both its ability to
identify the outliers and the probability of swamping. Three measures of performance are

considered: p, = P (all outliers are exactly identified), p,= P (at least one of the outliers is
identified), p;= P (at least one inlying observation is wrongly identified as an outlier). The
probability of masking is 1—p,, whereas the probability of swamping is p; that is also

called the false alarm rate. Thus excellent performance of an algorithm is indicated by large

value of p; and p4, and by small value of pj.
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We take the total number of observations #=25, 35, 45 and the number of regressor

variables p=2, 3 in the data set. For each value of # and p, 1000 data sets are generated
from the specified distributions. The simulation considers various data configurations such as
the density and geometry of outliers, number of observations, and dimension of regressor
variables. In order to generate the data sets with various outliers, z(z=1, 3, 7 for n=25;
z=1,5, 9 for n=35 z=5, 9, 11 for n=45) observations are contaminated by artificial
values according to the predetermined rules. In the tables and figures, the acronyms HV, LV,
HL, LL, HLV, and LLV represent, respectively, the scenarios in which the data set has high
vertical outliers, low vertical outliers, high leverage points, low leverage points, high leverage
points with high vertical outliers, and low leverage points with high vertical outliers. The test
for outlyingness is performed at 5% significance level. However, for comparison purposes, the
critical values of the algorithms are slightly adjusted to ensure that the expected false alarm
probability is close to 0.05 under the null hypothesis of no outliers.

Code development and Monte Carlo simulations are conducted in SAS/IML, and the figures
are obtained by S-Plus. The simulation results presented in Table 3 - Table 5 are summaries
based on 1000 runs for each scenario.

Simple model case : For each data set, the regressors and errors are generated,
respectively, from the U(0,20) and MO0,1) distributions with the randomly selected seed,
8940( #=25), 8940( #=35), and 123( n=45). Then the responses are obtained according to the
linear regression model with the coefficients arbitrarily selected to be 0.0 for the intercept
and 1.0 for the regressor variable. In order to plant the vertical outliers and bad leverage
points, z inlying observations are replaced by the shifted values according to the rules in
Table 1. To confirm that the artificial outliers are planted appropriately, the diagnostic plots
(Fig. 1 - Fig. 4) suggested by Rousseeuw and Zomeren (1990) are investigated for a data set
with 7 outliers out of 35 observations. The pilot studies illustrate that the rules confirm well

to the four outlier scenarios.

<Table 1> Rules for planting outliers : simple model case

Scenario x-shift (i=1,...,2) y-shift (i=1,...,2)
HL x;=40—0.06(:—1) y;=10-0.01z(i+1)
LL x;=35—0.06(i—1) y;=16—0.012(;+1)
HV xX;= 3"0.06(2_1) y,~=xl-+15

LV x;=3—0.06(i—1) yi=x;+1
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Multiple model case : The data sets for the multiple model case are generated in a similar
manner. The number of regressor variables p is set to 3 with n=25, 35, 45. The values
of two regressors and errors are generated from the ((0,20), MO0,3) and MO,1)
distributions, respectively. Seeds randomly chosen for X, are 91590( %#=25), 98755( #=35),
8940( #=45), and those for X, are 33333( #=25), 1231( #n=35), 5643( #=45). The regression
coefficients are arbitrarily specified as £;=0.0, 8;,=1.0, 8;=1.0 to generate the responses.

Also to contaminate the data

Diagnaestic plot Diagnostic plot

of o 35 L5F N
Ld CL K- 4 25 od o, 000 o o s e “g
g
L4 . ., L4
0 1 ; 3 4 ; o 1 2 3 4
Rabyst Distance computed by the MCD Robust Distance computed by the MCD
<Fig. 1> Diagnostic plot for HL <Fig. 2> Diagnostic plot for LL
Diagnostic plot Diagnostic plot
e - -
Ie-
H H W v 25
3 . 'y
i s i
° 2, ® o
O'B 0'5 0 "5 Z‘D 2'5 Dlﬂ Dls 1'0 |I§ 2‘0 2'5
Robust Distance computed by the MCD Robust Distance compuind by the MCD
<Fig. 3> Diagnostic plot for HV <Fig. 4> Diagnostic plot for LV

sets with vertical outliers and bad leverage points, z observations are shifted away from the
group of inlying observations according to the rules in Table 2. It can be found from the
diagnostic plots (Fig. 5 - Fig. 8) for a data set of each scenario that the outliers are planted

in the appropriate way.
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<Table 2> Rules for planting outliers : multiple model case

HL LL HLV LLV

x-shift x,;=25-0.05(:—1) x,;=40—0.05(;—1) L/x,;=40+0.03(:—1) L/x,;=32+0.03(i—1)

(i=1,..,2) (i=1,..,2) V/ x,;=7+0.03(;—1) V/ x,;=7+0.03(:—1)
(i=[2/2]+2,..,2) (i=[2/2]+2,..,2)
y-shift - - L/ v;,=6—-0.05(:+1) L/ y;=6-0.05(:+1)
(i=1,..,[z/2]+1) (i=1,..,[z/2]+1)
V/ y,-=xi+25 V/ y,-=x,-+15
(i=[2/21+2,..,2) (i=[2/21+2,...,2)
Diagnostic plot Diagnostic plot
of "% gof %o B T 2:5 o "y“«g&,,og o o R =
<Fig. 5> Diagnostic plot for HL <Fig. 6> Diagnostic plot for LL
Diagnostic plot Diagnostic plot
A" g | R -5 —
g"' .25 %o

<Fig. 7> Diagnostic plot for HLV
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<Fig. 8> Diagnostic plot for LLV
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Summary of simulation results : The results of Monte Carlo simulations are summarized in
Table 3 - Table 5. The estimates of pj, ps, and p3 are denoted, respectively, by 2)\1 1/)\2

and 53 which are the averages of proportions over 3 outlier configurations. (The complete

and detail tables are available from the authors.) The performance of the proposed algorithm
appears to be very similar in both the simple model case and the multiple model case. The
results indicate that the algorithm K-K has excellent capability and is superior to the H-S
algorithm for the most of the scenarios considered in the experiments. In particular, the
superiority of K-K increases as the percentage of outliers increases. Also the results
demonstrate that K-K is quite more powerful than H-S in case of high leverage and/or high
vertical outlier scenarios, and is less affected by the masking effects. In addition, the
algorithm outperforms as the number of observations increases. On the other hand, it turns
out that the proposed algorithm is less effective than H-S for the swamping problem since it
is partly based on the high breakdown estimator. (Wisnowski ef al. (2001) also note that H-S
has the unusually low false alarm probability.) However, the degree of ineffectiveness of K-K
is relatively low in many scenarios. In summary, the simulation studies indicate that the
proposed algorithm performs better than H-S in general.

<Table 3> Estimated measures of performance ( #=25)

Simple model Multiple model

Scenario  Measure H-S K-K Scenario  Measure H-S K-K
HL 7 0.727 0903 HL 2 0648 0915
D2 0782 0973 Dy 0718 1.000

3 0111  0.097 3 0.062  0.085

LL ) 0716  0.872 LL ) 0680 0915
Ds 0772 0941 s 0.786  1.000

b3 0.104 0.123 b3 0.065 0.085

HV ) 0.886  0.922 HLV 7 0606 0.872
2 0951  0.993 D2 0788  0.985

b3 0.088 0.078 b 0.068  0.093

LV h 0875  0.827 LLV h 058 0.715
D2 0.933  0.894 s 0672 0825

b3 0.078 0.132 b3 0.078 0.118
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<Table 4> Estimated measures of performance ( = 35)

Simple model Multiple model

Scenario Measure H-S K-K Scenario  Measure H-S K-K
HL 7 0600 0944 HL ) 0543 0948
D2 0730  0.99 D2 0575 1.000

D3 0071  0.056 D3 0.043  0.052

LL h 0683 0934 LL ) 0467 0948
b2 0721 0985 D 0.606  1.000

b3 0.067 0.064 b3 0035  0.052

HV ) 0907 0949 HLV ) 0736 0935
75 0955 0.999 Dy 0.874  1.000

b3 0.058 0.051 b3 0.044  0.065

LV 5 0923  0.906 LLV ) 0754 0919
D2 0973 0957 D2 0816 0.991

D3 0.057 0.073 Ds 0.049  0.063

<Table 5> Estimated measures of performance ( n=45)

Simple model Multiple model
Scenario Measure H-S K-K Scenario  Measure H-S K-K
HL 7 0531 0950 HL 7 0.467 0943
75 0556  0.999 75 0522  1.000
D3 0.043  0.049 D3 0.038  0.057
LL ) 0545 0.947 LL 7 0585 0.943
D3 0571 099 D3 0.716  1.000

b3 0.044 0.052 b3 0.041 0.057
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HV ) 0905 0951 HLV ) 0609 0.938
D2 0954  1.000 72 0814 0998
73 0.054  0.049 73 0.039  0.055
LV 7 0934 0927 LLV 7 0.710  0.909
b2 0984 0942 D2 0.766  0.983
D3 0.053  0.057 D3 0044  0.057

5. Concluding Remarks

This paper proposes a hybrid algorithm which combines the indirect approach and the direct
approach. An attempt is made to improve the algorithm suggested by Hadi and Simonoff
(1993). The proposed algorithm is different from H-S in the method of constructing the initial
clean subset. The former finds the clean subset on the basis of the least median of squares
estimator which is highly robust, whereas the latter does it using the least squares estimator
which is strongly affected by the outliers. Therefore, the proposed algorithm can construct
more clean initial subset and hence identify the outliers more correctly.

The performance of the proposed algorithm is investigated in a wide variety of outlier
scenarios and regression conditions. The algorithm K-K seems to be superior to H-S
particularly when there exist a lot of high leverage points in the data set. In general, the
simulation studies reveal that the proposed algorithm is more effective in identifying multiple
outliers and is relatively resistant to the masking problem. Furthermore, K-K does not require
presetting the number of outliers, does not require Monte Carlo simulation to determine cutoff
values, and achieves the computational efficiency and numerical stability.

Although the proposed algorithm has excellent identifying capability, it has some difficulty
with the swamping effect as expected. Despite this drawback, we may conclude that the
algorithm K-K outperforms the algorithm H-S in the sense that swamping is a less serious
problem than masking.
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