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Abstract

This paper presents an evolutignary design of digital IIR filters using the genetic algorithm (GA) with modified genetic operators
and real-valued encoding. Conventional digital IIR filter design methods involve algebraic transformations of the transfer function
of an analog low-pass filter (LPF) that satisfies prescribed filter specifications. Other types of frequency-selective digital filters as
high-pass (HPF), band-pass (BPF), and band-stop (BSF) filters are obtained by appropriate transformations of a prototype low-pass
filter. In the GA-based digital IIR filter design scheme, filter coefficients are represented as a set of real-valued genes in a
chromosome. Each chromosome represents the structure and weights of an individual filter. GA directly finds the coefficients of
the desired filter transfer function through genetic search for given filter specifications of minimum filter order. Crossover and
mutation operators are selected to ensure the stability of resulting IIR filters. Other types of filters can be found independently

from the filter specifications, not from algebraic transformations.

| . Introduction

Design of digital infinite impulse response (IIR) filters
involves determining the coefficients and the order of a filter
transfer function. Classical design schemes find an analog
prototype (low-pass) filter that satisfies prescribed filter
specifications and then convert the prototype filter to the
desired frequency-selective digital filter by appropriate
algebraic transformations of complex variables [Oppenheim,
1989]. Bilinear transformation has been a common choice of
transformation since it preserves frequency response and
stability constraints of the original filter without introducing
the aliasing problem. Other types of frequency selective filters
as high-pass (HPF), band-pass (BPF), and band-stop (BSF)
filters can be obtained from the prototype low-pass (LPF)
filter by another algebraic transformations.

The IIR filter design is in fact an optimization problem of
finding a rational function, which is the best approximation to
the given function (filter specifications). The error surface
defined by the difference between the desired and the actual
frequency responses is usually multimodal with respect to the
filter coefficients. In multimodal optimization problems,
popular gradient-based learning algorithms may get stuck in
local minima and often do not converge to the global
optimum.

Genetic algorithm (GA), as a population-based random
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search method, has been successful in searching for global
optimum in multimodal optimization problems [Goldberg,
1988], [Michalewicz, 1994]. Key advantages of the GA-based
filter design scheme include direct implementation of digital
filters without algebraic transformations from analog filters to
digital filters [Tang, 1996]. Other types of frequency-selective
filters as high-pass, band-pass, and band-stop filters can also
be designed independently without transformations from
canonical low-pass filter. Several works on the application of
the GA to filter design have been reported [Etter, 1982],
[Nambiar, 1992], [Flockton, 1993]. Recent efforts using the
hierarchical GA were successful in optimizing both IIR filter
structure and coefficients [Tang, 1998] by adopting control
genes as well as coefficient genes. Control genes are used to
represent a filter structure, while coefficient genes correspond
to real-valued filter coefficients. Binary control genes indicate
which filter coefficient will be involved in genetic operation at
every generation. Coefficients with 0 control gene are ignored
in genetic search to reduce the filter order.

In this paper, a digital IIR filter design method using the
genetic algorithm with modified crossover and mutation
operations is presented. The filter transfer function is
represented as a cascade form of first- and second-order
rational functions. All the coefficients of a specific filter are
encoded as a sct of real-valued genes of a chromosome. Each
chromosome includes real-valued filter coefficients, arranged in
a cascade form of first- and second-order terms. The control
genes, used in [8] to specify a filter structure, are not
included in the chromosome to simplify evolution procedures.
Filter coefficients whose absolute values are small enough are
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disregarded to reduce the filter order. The 1IR filter obtained
from the GA must satisfy the stability constraints. In order to
guarantee the stability, genetic operators are chosen to produce
filter coefficients that remain in the stable region of the filter
coefficients. Crossover operator is modified to generate
weights according to fitness value difference to ensure faster
and reliable convergence to the optimum coefficients. Mutation
probability varies in time to enhance the convergence.

2. Iir Filter Design Using The Genetic
Algorithm

2.1 Fitness Function for Filter Design

IIR filter design is often based on magnitude response in
frequency domain. Typically filter specifications involve
several design parameters as cutoff frequencies, pass-band
ripple, and stop-band gain in magnitude response. Phase
response is not considered in the design procedure in most
cases. Figure 1 shows a block diagram that shows a general
flow of IIR filter design procedure using the genetic
algorithms. A digital IIR filter with a transfer function H(z),
modeled as a rational function of the complex variable z-1,
has a frequency response H(e™). The difference &(w) of the
magnitude frequency response of the filter H(z) to be
optimized and the given filter specification HAz) is defined as:

e(o)=] HAe™)| —| H(e™)] 1

The magnitude response | He”™)| denotes desired filter

specification, and | H(e™)| indicates the magnitude response
of the actual filter. The GA searches for optimal filter
coefficients by maximizing the fitness function defined as a
reciprocal of the error function.

)

> g(w)

Figure I: IIR digital filter design using the GA.

Figure 2 graphically shows the error in frequency domain
produced by a digital IR filter to be optimized. Difference
between the magnitude of an actual filter response and the
desired filter specifications defines the error to be minimized.
If the filter response satisfies the specifications, then no error
occurs. Frequency range from 0 to the normalized sampling
frequency ( x) is considered.

Region C indicates the frequency range that filter response
does not satisfy desired filter specifications. The error in
frequency domain is used to define the fitness function of
genetic algorithm, a criterion function to be maximized. The
fitness function £ is a reciprocal of the sum of squared errors
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of the pass-band and stop-band in the region C.
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Figure 2: Error in magnitude response between the actual
response and desired filter specifications

f= (2)

1
1+ mZ=C[Eﬁ(w)+ e w)]

| He™) -1 if}] H(e™)| >1
elw)= ) ) (3)
(1-8) -1 H(e™)| if| He™| <(1-8)

ew)=| He™)| -6, if] H(e™)| >4, (4)

where ¢,(w) and e(w) are the errors between the filter
specification and actual frequency response in the pass-band
and stop-band, respectively. The total error is the sum of
pass-band and stop-band errors. The parameter ¢, defines the

pass-band ripple and &, indicates the stop-band gain. A

chromosome with the fitness value of 1 indicates the filter
that satisfies the specifications.

2.2 Encoding of Filter Coefficients

Filter coefficients are encoded in a chromosome for genetic
search. Each filter coefficient refers to a gene of a
chromosome. Filter transfer function can be implemented in
different forms. In this paper, a cascade realization of first-
and second-order factors is considered to represent the digital
IIR filter model. Transfer function of a digital IIR filter
represented in a cascade first- and second-order terms is
shown as

o1 -1 -2
H(Z)=Kﬁ( 1+b,2 l)ﬁ( l+b}12 +bﬂz . (5)

l+az" I+apz " +apz”

The variable K denotes the filter gain. The denominator
coefficients a;, a;, and ap are associated with poles, while
bi, by, bp are numerator polynomial coefficients associated
with zeros. The filter model assumes P first-order terms and Q
second-order terms in its transfer function. When P = 0, the
filter is composed of the second-order terms only. and
first-order components if ¢ = 0. The overall filter order
becomes P+2Q. '

A chromosome is composed of a series of genes. Each
gene corresponds to a filter coefficient of the first- and
second-order terms of the transfer function. The order of a
filter determines the number of genes in a chromosome.
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Figure 3 shows structure of the chromosome, or an encoding
scheme of filter coefficients. The first part of the chromosome
contains denominator polynomial coefficients, while the second
part are numerator polynomial coefficients. The maximum
values for P and @ determine the number of genes in a
chromosome. Filter gain can be determined with the condition
of the magnitude response at the zero frequency, and is not
encoded in a chromosome. All the filter coefficients are
encoded as real-valued genes.

(2,8, ., @@y by b apapdbaby)

Figure 3: Chromosome representation of the IIR filter
coefficients

Given the maximum order of an IIR filter, there are
different combinations of the first- and the second-order terms
in order to construct a filter. For example, a 5" order filter
can have three combinations of the terms: two second-order
terms and one first-order term, one second-order term and
three first-order terms, and five first-order terms. In this paper,
second-order terms are assumed to have priority against the
first-order terms.

2.3 Genetic Operations for Optimizing Filter Coefficients

Optimization by the genetic algorithms is carried on using
selection, genetic operations, and fitness evaluation. A set of
chromosomes generated randomly forms an initial population
filters. All the chromosomes in population are chosen to
satisfy the stability constraints. Selection procedure finds a
pool of individuals for genetic search using genetic operators.
Popular choice of selection is the roulette wheel method that
selects individuals with probability in proportion to the fitness
value. Individuals with larger fitness value have higher chance
to be selected for further genetic operations.

Genetic operations must be chosen to produce filter
coefficients that ensure stability of the IIR filter. In order to
guarantee the designed filter is stable, the poles associated
with the denominator polynomial coefficients must be inside
the unit circle of the =z-plane. Crossover and mutation
operations are considered to evolve new filter coefficients.
Crossover operator, based on the good building block
hypothesis, generates individuals with higher fitness value
from individuals in the previous generation. Mutation
operation produces random variations of the coefficients for
effective genetic search.

Consider two chromosomes and drawn from a population.
The two chromosomes contain first-order coefficients a!®,

a!®, and second-order coefficients a,({‘), a,(g") s a,(ly), and a,(zy)

of denominator polynomials. To satisfy the stability constraints
of IIR filters, the coefficients of the second-order term must
be inside the stability triangle determined by aj<ap+1,
a;>—(ap+1), and . The first order coefficients must satisfy
—1<a;<1. (See Appendix) Genetic operation must ensure
that the individuals after genetic operations are still in the

stable region.

The crossover operator used in [Tang, 1998] guarantees
stability after the crossover operation. For a pair of filter
coefficients, if a random number falls inside the crossover
probability, then a new filter coefficient ¢, is produced from

the two coefficients ' and o

in the mating pool as in
Equation (6). For the coefficients of the second-order term,

Equation (7) applies.
a=aaP+(1-a)a? (6)
ap=aaP+(1-a)ay (7)

The value of the parameter « is randomly generated in the
interval [0,1]. Since the stability triangle is a convex region,
the constant ¢ in the range [0,1] guarantees that the new
filter coefficients fall in the stable region as well after the
crossover operation. In a geometrical point of view, this
means that a new filter coefficient g, generated from the
crossover operation is on the line connecting the two filter

coefficients @\*

and a2 to be crossed over. In this paper,
a was chosen depending on the value of difference of the

fitness value to put weights for faster convergence.
-1 1

a(4f) = 9 4+ 9 (8

where df=fP—f% and —1<df<1. For example, if

F¥=1 and f9=0, then the value o=1 ensures g;~=a ",

the one with higher fitness value. Likewise, if Af=—1, then

a=a?

. This improves convergence speed comparing with
the case of random constant a.

Mutation probability P, decreases to improve the search
convergence of the genetic algorithm.

Cky~ Bk
P,(k)= %f*z"(m 9)

where k% denotes generation number and ky=100. Figure 4
shows the trend of mutation probability in generations. Early
stage of evolution takes mutation with probability close to 0.2,
which has a relatively large influence on genetic search.
Mutation probability gradually decreases, yet maintains
approximately 0.05 for improving search performance.

HE H H H i H i H
10 20 300 40 500 &M 0 €1 &0 109
Oererstion Number, k

Figure 4: Trend of the mutation probability

In crossover operation, performance improved by assigning
weights to individuals with higher fitness value. Mutation
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probability changes in generation to improve convergence.
Elitist method ensures individual of largest fitness to exist in
the following generation to reduce convergence time.

3. Results

Design of different types of filters LPF, HPF, BPF, and
PSF using the genetic algorithm is demonstrated. Figure 5
shows frequency response specifications for each of the
frequency-selective filters. Two parameters o, and &, deter-
mine the pass-band ripple and the stop-band margin. In the
simulation, the pass-band ripple is set to -1.5dB ( 6;=0.1586)
and the stop-band gain is -30dB ( §,=0.0361). For the
low-pass filter, pass-band is defined as [0, ;] and stop band
is [ wy, #]. Frequency bands [ w,, w,] and [ w,, w,] are called
transition bands. Table 1 shows specifications for different
types of frequency-selective filters. Transition bands are all set
to 0.17.

Table 1: Specifications for different types of frequency- selec
tive filters

Type ) w2 w3 w4
LPF 027 037 - -
HPF 0.7 1 0.8 - -
BPF 027 031 0.7 7 087
BSF 027 037 0.7 7 08 7
|t
1
1-8, b
5, s
o
@, o, T @
(a) LPF
e
1= it
1-6,— o,
5, MMMl |
oo, T ow
(b) HPF

118

]f;{(e"“’)hl
- vt
1-g- o,
5, il g g il
AT S S ST S
o, o5, Q3 oy 7T @
(c) BPF
wpt
7777 R
i i i IEI 1 i »
a, @, O, T @
(d) BSF

Figure 5: Frequency-selective filter specifications

The parameters used in the GA-based filter design scheme
are: population=100, crossover probability = 0.8, and mutation
probability = pm. The maximum number of generations is
4000 for LPF and 3000 for HPF. For BPF and BSF, the filter
converges after approximately 12000 generations. Crossover
and mutation probabilities affect convergence of the GA. Gain
K is determined to satisfy | H(¢®)| =1for LPF,
| H(e™| =1 for HPF, | H(e™)| =1 for BPF, and
| H(e”)| =| H(e™| =1 for BSF.
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Figure 6: Low-pass digital IIR filter using the GA
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Figure 6(a) shows the magnitude frequency response of the
low-pass filter obtained wusing the proposed genetic
optimization scheme. Figure 6(b) is a fitness trend during
evolution in the design procedure.

From Figure 7 to Figure 9, the proposed IIR filter design
method produced HPF, BPF, and BSF directly from the filter
specifications. All the magnitude responses of the IIR filter
designed by the genetic algorithm satisfy the filter
specifications.
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Figure 7: High-pass digital IIR filter using the GA

| NN

Magnitude
o o
~ o
—
b

01 02 03 04 05 06 07
Normaized Frequancy (xz rad/sample)

os c9 1

(a) Magnitude response

_
2600 4020 B30 €000 10000 12000 ¢
Generations.

(b) Fitness curve
Figure 8: Band-pass digital IIR filter using the GA
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Figure 9: Band-stop digital IIR filter using the GA

Equations (10)-(13) show the transfer functions of the
corresponding LPF, HPF, BPF, and BSF designed using the
GA, respectively.

_ (1+0.61352 "1 +0.78982 %)
Hip(2) =0.0069-(1 1 37727 7+0.79642 D)

. (1-1,03452"'+0,95772"%)
(1-1.0474271+0.2957z7%)

(10)

(1-0.33502 "1 +0,70932"%)
(1+1.2577271+0.4389z %)

(1+0.99092 "1 +0.95762"%)
(1+1.4197271+0.822327%)

HHP(Z) =00369
(1D

_ 1+0.00122"'—0.99882 "2
Hyl2) =067 =" 00052 T+0.48182 D)

C (1+1.60012""+1.00182 7%
(1+1.06252 1 +0.8458z %)

. (1-1,599527+1,00112"%)
(1-1.06222~"+0.84592 %)

(12)

_ 1+0.22842"1—(,88892 2
HBS(Z) 0.1178 (1+1_4344271+0.8079272)

(1+0.83452"1+0.96012"2)
(1+0.02732"1-0.4213z7%)
(1-0,98532"1+0.97642"%
(1-1.4050z'+0.75472 )

13)

For the purpose of comparison, conventional methods of
digital IIR filter design were implemented using the MATLAB
filter design toolbox [Krauss,1994] for different choices of
prototype filters, Butterworth (BW), Chebyshev (CH), and
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Elliptic (EL) filters. Table 2 summarizes the filter order
obtained for different filter types. The GA-based design
method achieved the same order as in the case of the elliptic
filters, which is the lowest.

Table 2: Filter order obtained for different filter types

Type BW CH1 CHI EL GA
LPF 9 5 4 4
HPF 9 5 5 4 4
BPF 14 8 8 6 6
BSF 14 8 8 6 6

4. Conclusion

Design of digital IIR digital filters using the genetic
algorithm with modified genetic operators is discussed. Filter
coefficients of the transfer function in cascade form of first-
and second-order terms are encoded as real-valued genes in a
chromosome. Chromosomes contain only coefficient genes, not
the control genes, for simplicity of genetic operations.
Coefficients whose value is sufficiently small are disregarded
to reduce the filter order. The fitness function is defined using
the sum of squared error in the desired and the actual
frequency response. Maximizing the fitness function
corresponds to minimizing the error.

Initial population of filter coefficients is chosen to satisfy
stability condition for IR filters. Genetic search produces a
population of candidate filters in every generation through
genetic operations. Crossover and mutation operators ensure
that filter coefficients generated from the genetic operations
must satisfy stability constraints as well. Crossover operator is
modified to have different weights according to fitness value
difference to ensure faster and reliable convergence to the
optimum coefficients. Mutation probability changing in time
improves the genetic search. The proposed filter design
scheme using the genetic algorithm produced LPF and other
types of frequency-selective filters directly and independently
without algebraic transformations. Comparing with classical
design methods of IIR filters, the 1IR filter design based on
the genetic optimization achieved lowest filter order.

Appendix:
Stability Constraints of Digital IIR Filters

Transfer function of a digital IIR filter can be represented
in a cascade form of first- and second-order terms. The
cascade realization of the IIR filters has the following form:

+bz”! +bpz  + bz
H(2)=Kﬁ‘ 1 r2—1 ﬁ L llz—l ﬂzfz
=1\ 1+az =\ 1+ayz +apz
Filter coefficients associated with poles must satisfy the
stability constraints in order to ensure the desired IIR filter

will be stable in the bounded-input bounded-output (BIBO)
sense. This can be achieved by noting that all the poles must

(AD)
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be located inside the unit circle in z-plane.
Consider the first-order term of the filter whose transfer
function is represented as

1+bz7!
Traa” (A2

H, 1(2) =

There is a pole at . In order to have the pole inside the

unit circle, the filter coefficient must satisfy the condition
| @l <1.

Second-order terms of the IIR filter have transfer functions
of the form

- -2
1+b112 1+b122
1+ ﬂ112_1+ ﬂ122_2

H(z)= (A3)

Let be the poles associated with this second-order term.
Then

3
—an*yVan—4ap

2

PI,P2= (A4)

The two poles must be inside the unit circle, which gives

—2<-aptV 4%1_4412<2

Since the coefficient a,, is simply the product of the two
satisfy  the
| a12f <1 for stability. For real roots,

(AD)

poles, the coefficient a;, must condition
ap<ap+l for
a;<2 and ay> —(ap+1) for a;,>—2. In case of double
roots, —2<g;,<2. For complex roots, a% <2ay,+2. Figure
A-1 shows the common region of coefficients g;; and a4, of

the transfer function H(z) for stability of the second-order
terms of IIR filters. The region is called the stability triangle.

@ =a;+1
\/‘{1=2‘7u+2

@, =2

a =-2

@, =—a, -1

Figure A-1: Region of the filter coefficients that guarantees
stability of the second-order IIR filter (the stability triangle)
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