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Abstract

In this paper, we introduce the concept of a fuzzy almost c-continuity and investigate some of its properties.
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1. Introduction and preliminaries

The study of continuity and its weaker forms constitutes an
established branch of investigation in general topological
spaces. Recently some researchers[1,2,7,8,16] have tried to
extend these studies to the broader framework of fuzzy
topological spaces. Using two notions of membership of a
fuzzy point to a fuzzy set, neighborhood structure of a fuzzy
point[10] and quasi-neighborhood structure of a fuzzy
point{11], an investigation of fuzzy continuity, fuzzy almost
continuity, fuzzy weak continuity, fuzzy c-continuity and fuzzy
H-continuity has been carried out in [1,2,7,8] with almost the
some degree of success as in general topological spaces.

In this paper, we extend the notion of almost c-continuity
introduced by S. G. Hwang[9] to fuzzy topological spaces.
Here we establish some properties of fuzzy almost
c-continuous mappings. In particular, we discuss the
relationship of fuzzy almost c-continuous mappings with other
notions of fuzzy topological spaces such as compactness,
regular openness and H-closedness.

In order to make the exposition self-contained as far as
practicable, we list some definitions and results that will be
used in the sequel. Let X be a non-empty set and let [ the
unit interval [0, 1]. A fizzy set A in X is a mapping from
X into I. For any fuzzy set A in X the set
{xeX:A(x) >0} is called the support of A and denoted
by S(A)[17]. A fuzzy point x; in X is a fuzzy set in X
defined by : for each ye X,

A, if =x,

u={ it yir .

where x=X and Ae(0,1] are respectively called the
support and the value of x,[11,14]. A fuzzy point x, is said

to belong to a fuzzy set A in X iff A<A(x)[I1]. A
fuzzy set A in X is the union of all fuzzy points which
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belong to A[11]. A subfamily 7 of I* is called a fizzy
topology on X[3] if () o,XeT, (i) for any
{U,} 4en< T, aLEJA U,eT and (iii) for any A, Be T,
A(Be T. In this case, each member of T is called a
fuzzy open)(in short, F-open) set in X and its complement a
fuzzy closed(in short, F-closed) set in X . The pair (X, T)
is called a fuzzy topological space(in short, fis). For a fis X,
FO(X) and FC(X) denote the collection of all F-open sets
and F-closed sets in X, respectively. For a fuzzy set A in a
fis X, the closure clA and the interior intA of A are
defined respectively as clA=(1{Vel"ACV and
Ve FO(X))} and intA= U{VeFO(X): VCA}[11]

Definition 1.1[5]. A fts X is said to be fuzzy T,,(in short,
FT,,) if for any two distinct fuzzy points x; and y, in
X, there exist U, Ve FO(X)such that x;eU, y, €V
and UOV=0.

Definition 1.2[2]. Let A be a fuzzy set in a fis X. Then :
(1) A is called a fuzzy regular open set in X if

A= int(clA).
(2 A is called a fizzy regular closed set in X if
A= cl(int A).

We denote the collection of all fuzzy regular open[resp.
closed] set in X as FRO(X)[resp. FRC(X)].

It is clear that FRO(X)CFO(X) and FRC(X)
CFC(X).

We will use the notion of fuzzy compactness in the sense
of S. Gangly and S. Saha[6].

Result 1.A[6, Theorem 4.2]. Every F-closed set in a compact
fis is F-compact.

Result 1.B[6, Theorem 4.6]. Let X be a fis and let AeI*.

Then A is F-compact in X if and only if each F-open cover
of A has a finite subcover.

153



International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 2, June 2002

Definition 1.3[13]. A fts X is said to be normalized if for
each x,€F,(X), there exists UeFO(X) such that

Ulx)=1.

Definition 1.4{13]. A fis X is said to be fizzy locally
compact(in short, locally F-compact) at x,e F,(X) if there
exists a F-open set U and a F-compact set K in X such
that x,e UCK. A fts X is said to be locally F-compact if
it is locally F-compact at each of its fuzzy points.

It is clear that every compact fts is locally compact.

Result 1.C[13, Corollary 4.2.3]. A normalized FT,,-space
X is locally F-compact if and only if for each x;eF,(X)
and each neighborhood V of x,, there exists a neighborhood
U of x, such that ¢/UC V and c¢/U is F-compact in X.

Definition 1.5[1]. A mapping f: X— Y is said to be fuzzy
almost continuous(in short, fal-continuous) at x,e F,(X) if
for each Ve FO(Y) such that #(x,)e V, there exists a
Ue FO(X) such that x;€ U and f(U) Cint(ciV). The
mapping f is said to be fal-comtinuous (on X) if it is
fal-continuous at each x,= F,(X)

Result 1.D{1,Theorem 4.1; 2,Theorem 7.2]. Let /- X— Y
be a mapping. Then the following are equivalent :

(1) 7 is fal-continuous.
(2) For each Ve FR(Y), fF ' (V)e FO(X).
(3) For each Fe FRC(Y), f Y(F)e FC(X)

Definition 1.6[8]. A mapping f: X— Y is said to be fuzzy
c-continuous(in short, fe-continuous) at x; € F,(X), if for
each Ve FO(X) such that f(x,)e V and V¢ is F-compact
in Y, there exists a Us FO(X) such that x;e U and
F(U) C V. The mapping f is said to be fc-continuous on X
if it is fc-continuous at each x,e F,(X).

Result 1.E[8, Theorem 2.2 and Theorem 3.3]. Let /' X—Y
be a mapping. Then the following are equivalent :

(1) f is fc-continuous. .

(2) For each Ve FO(Y) such that V° is F-compact in‘Y,
f U V)eFO(X).

(3) For each fuzzy closed compact set F in Y,
fHF) e FC(X).

Definition 1.7[7). Let A=7*. Then A is said to be fuzzy
H-closed relative to X (in short, fH-closed) if for each
F-open cover {V,} ,ea of A in X, there exists a finite

subfamily A, of A such that AC LEJA (cV,. The fis

X is said to be a fH-closed space if for each F-open cover
{V,} sen of X, there exists a finite subfamily A, of A
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such that UA (V) =X

&

Result 1.F[7, Lemma 2.2]. Let X be a FT,,-space. If B
is fH-closed in X, then Be FC(X).

Definition 1.8[7]. A mapping f: X— Y is said to be fizzy
H-continuous  (in  short, fH-continuous) if for each
x,€F,(X) and each Ve FO(Y) such that f(x,)eV
and V¢ is fH-closed in Y, there exists /e FO(X) such
that x,€ U and f(U)C V.

Result 1.G[7, Theorem 2.4.]. Let f: X— Y be a mapping.
Then the following are equivalent :

(1) f is fH-continuous.

2 If VeFO(Y) and V° is fH-closed in Y, then
Y V)e FO(X).
These statements are implied by

(3) If B is fH-closed in Y, then 7 !(B) e FC(X).

Furthermore, if Y is FT,,, then all three statements are

equivalent.

Let f:X—Y be a mapping Then the subset
G(f)={(x, Ax)): x= X} of the Cartesian product X x Y is
called the graph of f.

Definition 1.9. A mapping f: X— Y is said to have a fuzzy
closed graph(in short, F-closed graph) if G(f)e

FC(X xY).

Definition 1.10{7]. Let X and Y be fis's. Then a mapping
f: X—Y is said to have a fuzzy strongly closed graph(in
short, F-strongly closed graph) or the graph G(f) is said to
be fuzzy strongly closed(in short, F-strongly closed) in X X Y
if for each (x,, v, & F,(G(f)), there exist Ue FO(X)
Ve FO(Y) that
(U adV)OG(f)=0.

and such xnelU, y,eV and

Definition 1.11[7]. Let X and Y be fis's and let f: X—Y
be a mapping. Then the graph G(f) of £ is said to have an
upper fizzy point in X XY provided that for
(x4, 9,)eF,(G(f), there exist Ue FO(X)
Ve FO(Y) that x;elU, y,e€V and if
(Ux cd V)OG(f)= @, then there exists (a, b)e G(f)

such that (Ux ¢l V)(a, b)) %

each
and

such

Result 1.H[7, Lemma 3.3]. Let X and Y be fis's, let
£ X—Y a mapping and let G(f) have an upper fuzzy
point in Xx Y. Then f has a F-strongly closed graph if
and only if for each x,€ F,(X) and each y,eF,(Y)
such thaty+# f(x), there exist Ue FO(X) and Ve
FO(Y) such that x, €U, y,eVand AU)DclV=0.



Result 1.I[7, Theorem 3.8]. If a mapping f: X—Y has a
F-strongly closed graph, then it is fH- continuous.

Definition 1.12[1]. A mapping f: X— Y is said to be fizzy
weakly  continuous(in  short, F-weakly continuous) at
x,€ F,(X) if for each Ve FO(Y) such that f(x;)e V,
UsFO(X) such that x,=U and

there exists a

U dv.
The mapping f is F-weakly continuous(on X) if it is
F-weakly continuous at each x;€ Fp(X).

Result 1.J[1, Theorem 51]. A mapping f XY is
F-weakly continuous if and only if for each Ve FO(Y),

FTUV)Cint(f (e lV)).

2. Properties of fuzzy almost c-continuous
mappings
denote X,Y,Z as fuzzy

From now on, we will

topological space.

Definition 2.1. A mapping f: X— Y is said to be fizzy
almost c-continuous(in short, falc-continuous) at x;& F,(X)
if for each Ve FO(Y) such that f(x;)eV and V° is
F-compact in Y, there exists a UsFO(X) such that
x;eU and  f(U) C int(clV). The mapping f is
falc-continuous on X if it is falc-continuous at each
x,e F(X).

Remark 2.2. All F-continuous mappings, fc-continuous
mappings and fal-continuous mappings are falc- continuous.

Theorem 2.3. For a f: X— Y be a mapping, the following
are equivalent :

(1) 7 is falc-continuous.
(2) For each Ve FRO(Y) such that V° is F-compact in
Y, /7H(V)eFO(X).

(3) For each Fe FRC(Y) such that F is F-compact in
Y, fTY(F)eFC(X).

(4) For each x;e Fp(X) and each Ve FRO(Y)
containing f(x,) having F-compact complement, there
exists UUe FO(X) such that x,e U and f(U)C V.

(5) For each x,€F,(X) and each VeFO(Y) containing
F(x;) having F-compact complement, ! (int(ciV))
e FO(X)

(Proof) ()= (2) Suppose f is falc-continuous. Let
Ve FRO(Y) such that V° is F-compact in Y and let
x,€ f (V). By the hypothesis, there exists a Us FO(X)
such that x,eU and f(U) C int(clV)=7V. Thus

UcfF (V). Hence f (V) e FO(X).

On Fuzzy Almost c-Continuous Mappings

@=03) Suppose the condition (2) holds. Let
Fe FRC(Y) such that F is F-compact in Y. Then clearly
F¢e FRO(Y). By the hypothesis, f (F°)e FO(X).
But f NF) =[f "F)]° Hence f '(F)e FC(X).
(3)=(4) : Suppose the condition (3) holds. Let x,= F,(X)
Ve FRO(Y ) such that f(x;)eV and V° is
F-compact in Y. Then V e FRC(Y). By the hypothesis,
UV =FT(MIFeFC(X). Thes  fH(V)e
FO(X). Moreover, x;=f (V). Let U= £ (V). Then
cleary Ue FO(X), x;€U and f(U)C V.

(4)=(5) : Suppose the condition (4) holds. Let V= FO(Y)
having F-compact Then clearly int(clV)
eFRO(Y), [int(ciV)]° e FC(Y) and [imnt(clV)]‘TV®.
Since V° is F-compact in Y, by Result 1.A, [int(cIV)]¢
is F-compact in Y. Let x,ef (inf(clV)). Then f(x;)
eimt(clV). By the hypothesis, there exists UsFO(X)
such that «x;eU and AU)C int(ciV). Thus
x,€ UC f 1 (int(clV)). Hence f '(int(clV))e FO(X).
(5)=(1): Let x;eF,(X) and let Ve FO(Y) containing

and let

complement.

flx) having F-compact complement. Let
U=f'(int(clV)). Then, by the hypothesis, x,
eU=FO(X). Moreover, FUY = f(F Yint (clV))

Cint(clV). Hence f is falc- continuous.

Theorem 2.4. Any restriction of a falc-continuous mapping is
also falc-continuous.

(Proof) Let f: X— Y be falc-continuous, let A a crisp
subset of X and let Ve FRO(Y) have fuzzy compact
complement. Then, by Theorem 2.3, 7 }(V)e FO(X).
Thus  (fl4) (V) = (V)NA=f(V)ae FO(A).
Hence f|,: A— Yis falc-continuous.

Theorem 2.5, If /: X— Y is F-continuous and g: Y—Z7 is
falc-continuous, then g - f: X— Z is falc-continuous.

(Proof) Let Ve FRO(Z) have fuzzy compact complement.
Since g is falc-continuous, g (V) € FO(Y). Since f is
F-continuous, f (g™ (V)) € FO(X). But 7 (g (V)
= (f-g) (V). Thus (f-g) "(V)eFO(X).
g ° f is falc-continuous.

Hence

Theorem 2.6, Let f: X— ¥ be F-open and surjective. If
g 1 X—>27Z is then g:Y—2Z is
falc-continuous.

falc-continuous,

(Proof) Let Ve FRO(Z) have fuzzy compact complement.
Since g f is falc-continuous, (f - g)~!(V)e FO(X) or
f Yg N(V))e FO(X). Since f is surjective and F-open,

(V) =g N (V)e FO(Y). Hence g s
falc-continuous.
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Lemma 2.7. Let f:X—Y be a mapping and let
x,€ Fo(X). If there exists a U< FO(X) such that

x,elU, U=S(U) and f|, U—Y is fale- continuous at
x,;, then f is falc-continuous at x,.

(Proof) Let Ve FRO(Y) such that f(x;)e V and V° is
fuzzy compact in Y. Since f| , is falc-continuous at «x,,
there exists a U, e FO(U) such that x,€ U, and
A(Uy) = A(UDNC V. Since U, FO(U), there exists a
U,e FO(X) that U= Usly= U,NU.
x,€ Uy, x;€ U, U. Moreover U,NUe FO(X)
f(U,NU)C V. Hence f is falc-continuous.

such Since

and

Theorem 2.8. Let {U,},., be a fuzzy open cover of X
such that U, = S(U,) for each a1 and let f: X—> Y
a mapping. If f| ,:U,— Y is falc-continuous for each

ae A, then f is falc-continuous.
(Proof) It is straightforward from Lemma 2.7.

Theorem 2.9, Let f:X—Y be a mapping and let
X=AUB, where A,Be FC(X), A= S(A) and
B=S(B). If A4 and flp are falc-continuous, then f is

falc-continuous.

(Proof) Let Fe FRC(Y) such that F is fuzzy compact in
Y. Since f|4 and f|p are falc- continuous, by Theorem 2.3,

(fla) " (F)eFC(A) and (flz)"Y(F)e FC(B). On the
other hand, (f|,) " (F)=/f""(F)NA and (f|p) ' (F)
= fTYF)NB. Since X=AUB, f ' (F) = (fL.)""(F)
U (flp) (F). Ts fY(F)e FC(X).
Theorem 2.3, f is falc- continuous.

Hence, by

Theorem 2.10. Let f: X—Y be a mapping and let
X =AUB, where A= S(A) and B= S(B). If both
fla and flp are falc-continuous at x,& ANB, then f is

fale-continuous at x;.

(Proof) Let Ve FRO(Y) such that f(x,)e V and V° is
fuzzy compact in Y. Since both f, and flp are
falc-continuous at x, € AN B, there exist U, e FO(A),
Uy eFO(Y) such that x,& U, (fla)(Uy’))CV and
nely, (fl)(') V. U'eFO(A)
Uy € FO(B), there exists Uy, Uy= FO(X) such that U’
=Ula=UNA and Uy = Uylg= U,NB. Thus x,
s UNA, (flaXU)=f(U,NAYCV. So x, e UNU;
€ FO(X) FLUNU)=F(ANUINU) U
F(BNUNU)C fLANU) U ABNU,) C V. Hence £

is falc-continuous at «x;.

Since and

and
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Theorem 2.11. Let f: X— ¥ be falc-continuous. If ¥V is a
locally compact F7T,,-space, then f has fuzzy closed graph.

(Proof) Let G(f) demote the graph of f Let
(21, v.)€F,(XxY) such that (x;,, v)e [G(f)]° Then
f(x;) # y,. Since Y is FT,,, there exist Vi, Vo= FO(Y)
such that f(x;) € V,,y, €V, and Vi®OV,= 0. Since Y
is locally F-compact, there exists a Ve FO(Y) such that
¥,€VCclV= "V, and IV is F-compact in Y. On the other
hand, (clV) = intV°® = int(clV°) e FRO(Y). By
Theorem 2.3, f7'[(cIV)°] = [ ! (cIV))°e FO(X). Thus
F(clV) eFC(X). Since ViOV,=0, V,C VS Thus
Wicvic (elV)©. Since f(x,)eVy, flx)e(cdV)® or
€ eIV = [f"(cIV)]°. Thus there exists a
Ue FO(X) such that x;& UC [f7'(cIV)]® So AU)C
(ciV)e. Thus (x;,y,)eUx Ve FO(XxXY), UxVC

[G(f)]° and thus [G(F)]° e FO(X x Y). Hence G(f) is
F-closed in X x Y.

Theorem 2.12. Let f:X—Y be a mapping and let
g: X— Xx Y the graph mapping of f. If X is F-compact
and g is falc-continuous, then f is falc-continuous.

(Proof) Let x,eF,(X) and let Ve FO(Y) such that
flx)eV and V¢ is Y. Then
N (V)e FO(X x Y). Since X and V° are F-compact.
Xx V= [z;'(V)]° is F-compact in X x Y. Since g is
U FO(X) such that
= int[cl(X %X V)]

F-compact in

falc-continuous, there exists a
U and g(U)C mt(clny (V)

= mt(clX) X int(clV) = XX int(clV)
= 77 ' (int(clV)) = ny ' Gint(ciV)). So (g (U))
= f(U) C ml a7 (int(ciV))] Cint(ciV). Hence f is
falc-continuous.

3. Further results

Theorem 3.1. Let Y be a normalized locally compact FT,,
-space. If f: X—Y is falc-continuous and G(f) has an upper
fuzzy point in X x ¥, then G(f) is F-strongly closed in
Xx Y.

(Proof) Let (x;,y,)< F,(G(f)). Then . f(x;). Since
Y is FT,, there exist V|, V,e FO(Y) such that
vee Vi, fxi)e V, ViOV,=®. Since Y is
normalized locally F-compact, by Result 1.C, there exists
Ve FO(Y) such that y,e VC cIVCV, and ¢lV is
F-compact in Y. Since f is fal-continuous and
clVe FRC(Y), by Result 1.D, f1(ciV)e FO(X). Let
U= [f""(cIV)] Then clearly x,= U< FO(X). Moreover

and



AUYOclV = @. Hence, by Result I.H, G(f) is F-strongly
closed in Xx Y.

The following is the immediate result of Result 1.H and
Theorem 3.1 :

Corollary 3.2. Let Y be a normalized locally compact FT,

-space, let G(f) have an upper fuzzy point in X x Y and let
f X— Y be a mapping. Then the following are equivalent:

(1) G(f) is F-strongly closed in Xx Y.
(2) f is fH-continuous.

(3) f is fc-continuous.

(4) f is falc-continuous.

Theorem 3.3. Let £ X— Y be falc-continuous. If Y is a
fis(resp. compact FT,,-space), then f is
fal-continuous(resp. F-continuous).

compact

(Proof) Suppose Y is a compact fis. Let Fe FRC(Y).
Since Y is a compact fis, by Result 1.A, F is F-compact in

Y. Then, by Theorem 2.3, f (F)eFC(X). Hence, by
Result 1.D, f is fal-continuous.

Lemma 34. If f: X—Y is F-weakly continuous and K is
F-compact in X, then A(K) is fH-closed in Y.

(Proof) Let {V,} o be any F-open cover of f(K)in Y.
Since f is F-weakly continuous, by Result 1.,
FIvYCmt(f  (clVy) for Since
ey U ve KoY va=Usrtva e Y
Lint(f "' (ciV,))]. Since K is F- compact in X, by Result
1.B, there exists a finite subfamily A, of A such that
Ko U Lint(f 7 (ctV)]. Then  AK)C U (c1Vo).

Hence f(K) is fH-closed in Y.

each as A.

Theorem 3.5. Let
compact

{Y,}4ea be a family of normalized
locally foX—Y, be
falc-continuous for each qe=A. If G(f,) has an upper fuzzy
point in XxY, for acs A,
fiX— 1 Y, defined by f(x) = (fo(x))en for each

FTy,spaces and let

each then the mapping

xe X, is fH-continuous.

(Proof) Let (x;v,)e F,(G(f)) where y,= (v4.,,)qcen
and g = inf p,. Then y= f(x) and there exists B=/ such
that y,,,  fp(x:). Since Y, is normalized locally compact
FTy,, fgX—Y; is falc-continuous and G(fp) has an
upper fuzzy point in X x Y, by Theorem 3.1, G(f;) is
F-strongly closed in X x Y, Thus, by Result 1.H, there exist
UsFO(X) and Vze FO(Y,) that x,e U,
Vo€ Veand f(U)DclVy=@. Let V= V;x a];[ﬁ Y,

such

On Fuzzy Almost c-Continuous Mappings

Then clearly Ve FO( HA Y,) such that y,eV and

F(UYOclV=@. Thus, by Result 1.H, G(f) is F-strongly
closed in XX ];IA Y,. Hence, by Result 1.G, s is fH-

continuous.
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