Inhanced Oxygen Supply of Xanthan Fermentations Using either Hydrogen Peroxide or Fluidized Particles in Tower Bioreators

탑형 생물반응기에서 과산화수소 또는 유동화 입자를 이용만 Xanthan 발효의 산소공급 향상

  • 서일순 (건국대학교 화학공학과)
  • Published : 2002.04.01

Abstract

The decomposition of hydrogen peroxide was used for supplementing the oxygen during batch xanthan fermentations in a bubble column bioreactor in order to escape the oxygen transfer limitation that occurred at the high viscosity of culture broths. The xanthan production, however, was inhibited reversibly by dosing hydrogen peroxide. On the other hand, fluidized particles of glass beads with 8 mm diameter led to high gas-liquid oxygen transfer rates in three-phase fluidized beds, which resulted in higher space-time yields of the xanthan production compared to in the bubble column bioreactors.

기포탑 회분식 xanthan 발효에서 xanthan 생성속도와 분자량에 영향을 미치는 산소전달제한을 피하기 위하여 과산화수소수를 산소공금 보조수단으로 사용하였다. 과산화수소수 주 입은 xanthin 생성을 가역적으로 저해하였다. 반면이 직경 8 mm 유리구슬 유동화 입자는 기-액 산소전달속도를 증가시켜서 기-액-고 삼상유동충 생물반응기에서의 xanthan 발효는 기포탑 발효에 비하여 높은 단위균체량 당 xanthan 생성속도 및 점도수윤 그리고 반응기 공간-시간 수윤(space-time yield)을 보였다.

Keywords

References

  1. Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation v.5 Xanthan Gum Gandia, J.-L. Flores;W. -D. Deckwer;M. C. Flickinger(ed);S. W. Drew(ed)
  2. Chem. Eng. Technol. v.15 Xanthan Production in Stirred Tank Fermenters;Oxygen Transfer and Scale-up Herbst, H.;A. Schumpe;W. -D. Deckwer https://doi.org/10.1002/ceat.270150610
  3. Biotechnol. Bioeng. v.57 The Influence of Impeller Type in Pilot Scale Xanthan Fermentations Amanullah, A.;L. Serrano-Carreon;B. Castro;E. Galindo;A. W. Nienow https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<95::AID-BIT12>3.0.CO;2-7
  4. Biotechnol. Bioeng. v.39 Xanthan Production in Bubble Coumn and Air-Lift Reactors Suh, I. -S.;A. Schumpe;W. -D. Deckwer https://doi.org/10.1002/bit.260390113
  5. Appl. Microbiol. Biotechnol. v.35 Xanthan Production in a Plunging Jet Reactor Zaidi, A.;P. Ghosh;A. Schumpe;W. -D. Deckwer
  6. HWAHAK KONGHAK v.34 Batchwise Xanthan Production in Tower Bioreactors-Bubble Coumn and Three Phase Fluidized Bed Suh, I. -S.;W. -D. Deckwer
  7. Can. J. Chem. Eng. v.70 Modeling of Batchwise Xanthan Production Peters, H. -U.;I. -S. Suh;A. Schumpe;W. -D. Deckwer https://doi.org/10.1139/v92-099
  8. Biotechnol. Lett. v.12 The molecular Weight of Xanthan Polysaccharide Produced under Oxygen Limmitation Suh, I. -S.;H. Herbst;A. Schumpe;W. -D. Deckwer https://doi.org/10.1007/BF01026799
  9. Chem. Eng. Sci. v.52 Gas Density Effect on Mass Transfer in the slurry Bubble Column Dewes, I.;A. Schumpe https://doi.org/10.1016/S0009-2509(97)00252-2
  10. Can. J. Chem. Eng. v.50 Hold-up and Axial Mixing Characteristics of Two and Three Phase Fluidized Beds Kim, S. D.;C. G. J. Baker;M. A. Bergounou https://doi.org/10.1002/cjce.5450500603
  11. Can. J. Chem. Eng. v.67 Gas-Liquid Mass Transfer in Three-Phase Fluidized Beds with Viscous Pseudoplastic Liquids Schumpe, A.;W. -D. Deckwer;K. D. P. Nigam https://doi.org/10.1002/cjce.5450670523
  12. Biochemical Engineering-Stuttgart Schumpe, A.;S. Diedrichs;P. G. M. Hesselink;S. Nene;W. -D. Deckwer;M. Reuss(ed);H. Chmiel(ed);E. -D. Gilles(ed);H. -J. Knack
  13. Bioprocess Eng. v.20 Oxygen Transfer Characteristics of Multiple-Phase Dispersions Simmulating Water-in-Oil Fermentations Zhao, S.;S. G. Kuttuba;L. -K. Ju https://doi.org/10.1007/s004490050597
  14. Biotechnol. Bioeng. v.36 Mechanism of Enhanced Oxygen Transfer in Fermentation Using Emulsified Oxygen-Vectors Rols, J. L.;J. S. Condoret;C. Fonade;G. Goma https://doi.org/10.1002/bit.260360414
  15. The Enzymes v.13 Catalase Schonbaum. G. R.;B. Chance.;P. D. Boyer(ed)
  16. Biotechnol. Bioeng. v.59 Oxygen Supply without Gas-Liquid Film Resistance to Xanthomonas campestris Cultivation Sriram, G.;Y. M. Rao;A. K. Suresh;G. K. Sureshkumar https://doi.org/10.1002/(SICI)1097-0290(19980920)59:6<714::AID-BIT8>3.0.CO;2-I
  17. Korean J. Biotechnol. Bioeng. v.17 Continuous Xanthan Fermentations in a Three-Phase Fluidized Bed Bioreactor Suh, I. -S.;H. -C. Roh;C. H. Heo
  18. Rheol. Acta. v.21 Simple Conversion of Brookfield R. V. T. Readings into Viscosity Functions Mitschka, P. https://doi.org/10.1007/BF01736420
  19. Can. J. Chem. Eng. v.69 Gas-Liquid Mass Transfer in the Bubble Column with Viscoelastic Liquid Suh, I. -S;A. Schumpe;W. -D. Deckwer;W. -M. Kulicke https://doi.org/10.1002/cjce.5450690215
  20. J. Bacteriol. v.178 Heterologous Growth Phase- and Temperature- Dependent Expression and H₂O₂Toxicity Protection of a Superoxide-Inducible Monofunctional Catalase Gene from Xanthomonas oryzae pv. oryzae Mongkolsuk, S.;S. Loprasert;P. Vattanaviboon;C. Chanvanichayachai;S. Chamnongpol;N. Supsamran https://doi.org/10.1128/jb.178.12.3578-3584.1996