Selective Adsorption of a Symmetrie Theophylline Imprinted Membrane Prepare by a Wet Phase Inversion Method

습식 상 전이법으로 제조된 Theophylline 각인 대칭 막의 선택적 흡착

  • 박중곤 (경북대학교 공과대학 화학공학과) ;
  • 오창엽 (경북대학교 공과대학 화학공학과) ;
  • 서정일 (경북대학교 공과대학 화학공학과)
  • Published : 2002.04.01

Abstract

The theophylline imprinted membrane was prepared by a wet phase inversion method. Theophylline was implanted during copolymerization of acrylonitrile with acrylic acid or implanted in the dimethyl sulfoxide solution containing10 wt% copolymer, p(AN-co-AA). Rolling the glass plate, on which the copolymer solution was cast, in water removed the sponge layer and thus made the membrane symmetric. The adsorption selectivity of the membrane toward template molecule was increased with the coagulation temperature of the membrane and the initial concentration of the theophylline and caffeine mixture.

습식 상 전환법으로 theophylline이 각인된 poly(acryloni-trile-co-acrylic acid) 막을 제조하였다. theophylline은 고분자가 공중합되는 과정에 각인시키거나(in-situ implanting) 제자리 동시 각인) 공중합된 고분자를 DMSO 용액에 녹이면서 template를 섞어 각인시켰다(post implanting, 후 각인). 막의 template molecule에 대한 흡착 선택도는 응고시키는 물의 온도가 높을수록, 혼합물의 초기 농도가 높을수록 크게 나타났다. 후 각인법으로 제조된 막의 흡착선택도가 제자리 동시각인 제작법으로 제조된 막보다 흡착선택도가 우수하였다.

Keywords

References

  1. Angew. Chem. v.84 Uber die anwendung von enzymanalog gebauten polymeren zur racemattrennung Wulff, G.;A. Sarhan
  2. Biopolymers v.11 Macromoleculesmall interactions;Introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages Takagishi, T.;I. M. Klotz https://doi.org/10.1002/bip.1972.360110213
  3. J. Am. Chem. Soc. v.117 Polymeric adsorbents for cholesterol prepared by molecular imprinting. in separations for biotechnology Whitcombe, M. J.;M. E. Rodriquez;E. N. Vulfson https://doi.org/10.1021/ja00132a010
  4. J. Chem. Soc. Chem. Commun. Molecular imprinting of a transition state analogue leads to a polymer exhibiting esterolytic activity Robinson, D. K.;K. Mosbach
  5. J. Mol. Cat. v.87 Homogenous and heterogenous esterolytic catalyses of imidazole-containing polymers prepared by molecular imprinting of a transition-state analogue Ohkubo, K.;Y. Urata;S. Hirota;Y. Honda;T. Sagawa https://doi.org/10.1016/0304-5102(93)E0252-C
  6. Anal. Chem. v.69 Molecular imprinting;New possibilities for sensor technology Kriz, D.;O. Ramstrom;K. Mosbach https://doi.org/10.1021/ac971657e
  7. Sensor Actuators A v.37/38 Some studies of molecularly imprinted polymer membranes in combination with field-effect devices Hedborg, E.;F. Winquist;I. Lundstroem;L. I. Andersson;K. Mosbach https://doi.org/10.1016/0924-4247(93)80134-3
  8. Anal. Chem. v.68 no.21 Molecularly imprinted polymer beads;Suspension polymerization using a liquid perfluorocarbon as the dispersing phase Mayes, A. G.;K. Mosbach https://doi.org/10.1021/ac960363a
  9. Anal. Chem. v.65 Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique Matsui, J.;T. Kato;T. Takeuchi;M. Suzuki;K. Yokoyama;E. Tamiya;I. Karube https://doi.org/10.1021/ac00065a009
  10. Biopolym. Kletka v.6 Substrate selective polymeric membranes;Selective transfer of nucleic acid components Pilesky, S. A.;I. Y. Dubey;D. M. Fedorylak;V. P. Kukhar
  11. J. Am. Chem. Soc. v.118 Imprinted polymer membranes for the selective transport of targeted neutral molecules Mathew-Krotz, J.;K. J. Shea https://doi.org/10.1021/ja954066j
  12. Chem. Mater. v.10 Selectively-permeable ultrathin film composite membranes based on molecularly-imprinted polymers Hong, J. M.;P. E. Andersson;J. Qian;C. R. Martin https://doi.org/10.1021/cm970608f
  13. J. Membr. Sci. v.108 Molecularly imprinted polymeric membranes for optical resolution Yoshikawa, M.;J. Izumi;T. Kitao;S. Koya;S. Sakamoto https://doi.org/10.1016/0376-7388(95)00160-8
  14. Polym. J. v.29 Enantioselective electrodialysis of amino acids with charged polarside chains through molecularly imprinted polymeric membranes containing DIDE derivatives Yoshikawa, M.;J. Izumi;T. Kitao. https://doi.org/10.1295/polymj.29.205
  15. Macromolecules v.29 Molecularly imprinted polymeric membranes containing DIDE derivatives for optical resolution of aminoacids Yoshikawa, M.;J. Izumi;T. Kitao.;S. Sakamoto https://doi.org/10.1021/ma951716v
  16. Chem. Lett. Enantioselective electrodialysis of N-alpha-acetyltryptophans through molecularly imprinted polymeric membranes Yoshikawa, M.;J. Izumi;T. Kitao.
  17. Chem. Lett. Molecular imprinting of theophylline in acrylonitrileacrylic acid copolymer membrane Kobayashi, T.;H. Y. Wang;N. Fujii
  18. Langmuir v.12 Molecular imprint membranes prepared by the phase inversion precipitation technique Wang, H. Y.;T. Kobayashi;N. Fujii https://doi.org/10.1021/la960243y
  19. Langmuir v.13 Molecular Imprint Membranes Prepared by the Phase Inversion Technique;2. influence of Coagulation Temperature in the Phase Inversion Process on the Encoding in Polymeric Membranes Wang, H. Y.;T. Kobayashi;T. Fukaya;N. Fujii https://doi.org/10.1021/la970114x