DOI QR코드

DOI QR Code

Influence of Soil Microbial Biomass on Growth and Biocontrol Efficac of Trichoderma harzianum

  • Bae, Yeoung-Seuk (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Guy R. Kundsen (Department of Plant, Soil, and Entomological Sciences, College of Agriculture, University of Idaho, Moscow) ;
  • Louise-Marie C. Dandurand (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA, Suwon)
  • Published : 2002.02.01

Abstract

The hyphal growth and biocontrol efficacy of Trichodemo harzianum in soil may depend on its interactions with biotic components of the soil environment. The effect of soil microbial biomass on growth and biocontrol efficacy of T. hanianum isolate ThzIDl-M3 (green fluorescent protein transformant) was investigated using artificially prepared different levels of soil microbial biomass (153,328, or 517ug biomass carbon per g of dry soil; BC). The hyphal growth of T. harzanum was significantly inhibited in the soil with 328 or 517 $\mu$g BC compared with 153 ug BC. When ThzIDl-M3 was added to the soils as an alginate pellet formulation, the recoverable population of ThzIDl-M3 varied, but the highest population occurred in 517ug BC. Addition of alginate pellets of ThzIDl-M3 to the soils (10 per 50 g) resulted in increased indigenous microbial populations (total fungi, bacterial fluorescent Pseudomonas app., and actinomycetes). Furthermore, colonizing ability of ThzIDl-M3 on sclerotia of Sclerotinia sclerotiorum was significantly reduced in the soil with high revel of BC. These results suggest that increased soil microbial biomass contributes to increased interactions between introduced T. harzianum and soil microorganisms, consequently reducing the biocontrol efficacy of 1T. harzianum.

Keywords

References

  1. Bae, Y.-S. and Knudsen, G. K. 2000. Cotransformation of Trichoderma harzianum with \beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl. Environ. MicrobioI. 66:810-815 https://doi.org/10.1128/AEM.66.2.810-815.2000
  2. Bae, Y.-S. and Knudsen, G. K. 2001. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. PhytopathoIogy 91:301-306 https://doi.org/10.1094/PHYTO.2001.91.3.301
  3. Bin, L., Knudsen, G. R. and Eschen, D. J. 1991. Influence of an antagonistic strain of Pseudomonas fluorescens on growth and ability of Trichoderma harzianum to colonize sclerotia of Sclerotinia sclerotiorum in soil. PhytopathoIogy 81:994-1000 https://doi.org/10.1094/Phyto-81-994
  4. Chet, I. 1987. Trichoderma- Application, mode of action, and potential as biocontrol agent of soilborne plant pathogenic fungi. In: Inovation approaches to pIant disease controI, ed. by I. Chet, pp. 137-160. John Wiley & Sons, New York, N.Y
  5. Dalal, R. C., Henderson, P. A. and Guasby, J. M. 1991. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage. Soil BioI. Biochem. 23:435-441 https://doi.org/10.1016/0038-0717(91)90006-6
  6. Dandurand, L. M. and Knudsen, G. R. 1993. Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265-270 https://doi.org/10.1094/Phyto-83-265
  7. Dhingra, O. D. and Sinclair, J. B. 1985. Basic plant pathology methods. CRC Press, Inc. Boca Raton, Florida. 355 pp
  8. Eastburn, D. M. and Butler, E. E. 1988a. Microhabitat Characterization of Trichoderma harzianum in natural soil: Evaluation of factors affecting population density. SoiI Biol. Biochem. 20:541-545 https://doi.org/10.1016/0038-0717(88)90070-3
  9. Eastbum, D. M. and Butler, E. E. 1988b. Microhabitat Characterization of Trichoderma harzianum in natural soil: Evaluation of factors affecting distribution. SoiI Biol. Biochem. 20:547-553 https://doi.org/10.1016/0038-0717(88)90071-5
  10. Elad, Y, Chet, I. and Henis, Y. 1981. A selective medium for improving quantitadve isolation of Trichoderma spp. from soil. Phytoparasitica 9:245-254
  11. Fravel, D. R. 1988. The role of antibiosis in biocontrol of plant diseases. Annu. Rev. Phytopathol. 26:75-91 https://doi.org/10.1146/annurev.py.26.090188.000451
  12. Hadar, Y., Harman, G. E. and Taylor, A. G. 1984. Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology 74:106-110 https://doi.org/10.1094/Phyto-74-106
  13. Hubbard, J. P., Harman, G. E. and Hadar, Y. 1983. Effect of soiIborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology 73:655-659 https://doi.org/10.1094/Phyto-73-655
  14. Jenkinson, D. S. and Oades, J. M. 1979. A method for measuring adenosine thphosphate in soil. SoiI BioI. Biochem. 11:193-199 https://doi.org/10.1016/0038-0717(79)90100-7
  15. Jenkinson, D. S. and Powlson, D. S. 1976. The effects of treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8:209-213 https://doi.org/10.1016/0038-0717(76)90005-5
  16. Knudsen, G. R. and Bin, L. 1990. Effects of temperature, soil moisture, and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology 80:724-727 https://doi.org/10.1094/Phyto-80-724
  17. Knudsen, G. R., Eschen, D. J., Dandurand, L. M. and Bin, L. 1991. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of scleroda by Trichoderma harzanum. Plant Dis. 75:466-470 https://doi.org/10.1094/PD-75-0466
  18. Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J. and Alabouvette, C. 1995. Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon escuIentum Mill.), on the diversity of soil-borne popula tions of fluorescent pseudomonads. Appl. Environ. Microbiol. 61:1004-1012
  19. Lumsden, R. D. 1990. Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma haruanum against Pythium ultimum. Soil Biol. Biochem. 22:187-194 https://doi.org/10.1016/0038-0717(90)90085-E
  20. Lundquist, E. J., Scow, K. M., Jackson, L. E., Uesugi, S. L. and Johnson, C. R. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol. Biochem. 31:1661-1675 https://doi.org/10.1016/S0038-0717(99)00080-2
  21. Mackie, A. E. and Wheatley, R. E. 1999. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol. Biochem. 31:375-385 https://doi.org/10.1016/S0038-0717(98)00140-0
  22. Oades, J. M. and Jenkinson, D. S. 1979. Adenosine triphosphate content of the soil microbial biomass. Soil BioI. Biochem. 11:201-204 https://doi.org/10.1016/0038-0717(79)90101-9
  23. Papavizas, G. C. 1985. Trichoderma and Gliocladium: Biology, ecology, and potential for biocontrol. Annu. Rev. Phytopathol. 23:23-54 https://doi.org/10.1146/annurev.py.23.090185.000323
  24. Stack, J. P., Kenerley, C. M. and Pettit, R. E. 1987. Influence of carbon and nitrogen sources, relative carbon and nitrogen concentrations, and soil moisture on the growth in nonsterile soil of soilborne fungal antagonists. Can. J. Microbiol. 33:626-631 https://doi.org/10.1139/m87-109
  25. Van de Werf, H. and Verstraete, W. 1987. Estimadon of active soil microbial biomass by mathematical analysis of respiration curves: Calibration of the test procedure. Soil Biol. Biochem. 19:261-265 https://doi.org/10.1016/0038-0717(87)90007-1

Cited by

  1. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt vol.107, pp.1, 2013, https://doi.org/10.1016/j.pestbp.2013.06.001
  2. Response of Free-Living Nematodes to Treatments Targeting Plant Parasitic Nematodes in Carnation vol.7, pp.5, 2008, https://doi.org/10.3923/ajps.2008.467.472