A Deletion in Fungal Ras Promoter in Two Korean Strains of Oak Mushroom (Lentinula edodes)

Jae Soon Lee, Eun Woon Noh*, Young Im Choi and Won Chull Park

Division of Biotechnology, Korea Forest Research Institute, Omok-dong, Suwon 441-350, Korea
Division of Wood Chemistry and Microbiology, Korea Forest Research Institute, Chongnyangni-dong, Seoul 130-712, Korea

(Received on February 6, 2002)

This study unexpectedly detected a deletion in the promoter region of ras gene in two Korean strains of oak mushrooms, Lentinula edodes (Berk.). Sequencing of the promoter regions revealed that one type consisting of two strains had a 113 bp deletion in the region. The ras promoter region of Korean strains differed by 16 bases from that of the Japanese strains. Between the two types of Korean strains, except for the deleted portion, only a single site appeared to be different.

Keywords: deletion, Lentinula edodes, oak mushroom, ras promoter.

Oak mushroom, Lentinula edodes (Berk.), belongs to the family Tricholomataceae. This edible mushroom grows on the stems of oak tree species (Quercus spp) in the wild. However, for commercial production, it is being cultivated using sawdust and other artificial media. Although a number of strains have been known in the market, many more are being developed in Korea, Japan, and China.

Ras genes are present in all organisms, and are known to play a role in growth and development (Shin and Yun 1996). In mammalian cells, they are involved in the genesis of a wide variety of tumors (Ross, 1996). Although there have been some speculations that ras genes might be involved in fruiting body formation in some fungi, there has been no direct evidence to support this theory (Hori et al., 1991). The promoter region of the ras gene in L. edodes was physically examined by Kajiwara and Shishido (1992). However, its expression pattern in L. edodes has not been established yet.

This study attempted to develop T-DNA vectors for mushroom transformation. As selectable markers, antibiotics resistance genes (optpl and hpt) under the control of nopaline synthase promoter, known as a constitutive plant expression promoter (An et al., 1986), were used. However, no transformants were obtained from those vectors. It was speculated that the plant promoter was not working in the mushroom system. Therefore, the use of ras promoter was decided upon since it has already been characterized in the same species (Kajiwara and Shishido, 1992). In the process, a deletion in the ras promoter region in some of the Korean strains was unexpectedly found. This paper reports the nucleotide difference in the deletion mutants of L. edodes.

Materials and Methods

Eight different strains of L. edodes with various shapes, habitats, and growing patterns were used in this study. The characteristics of the strains are described in Table 1. In addition, two uncharacterized strains (Pyogo 16 and 164) that had been maintained in culture were included for PCR pattern comparison.

DNA extraction. DNA was extracted from the mycelia of L. edodes by alkaline lysis method used for plant DNA extraction with a slight modification (Junghans and Metzalff, 1980). The modification was a prolonged incubation (3 h) in lysis buffer at 65°C.

PCR amplification and cloning of RAS promoter region. The primer sequence for the amplification of ras promoter was designed based on the promoter sequence of Japanese strain FMC2 (Kajiwara and Shishido, 1992). The primers include LE 1: 5'-AAG CTT CGG ATA GCG GGA TCA TAT G-3' and LE 2: 5'-GGA TCC AGA AAC AGT CGG CTG CTC-3'. Each reaction mixture contained 0.4 μM primers, 200 nM dNTPs, 0.2 ng template DNA, 2 U of Taq DNA polymerase and PCR buffer.

Table 1. Characteristics of Lentinula edodes strains tested

<table>
<thead>
<tr>
<th>Strain</th>
<th>Temperature*</th>
<th>Suitable medium for cultivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanlim1</td>
<td>Low</td>
<td>Log</td>
</tr>
<tr>
<td>Sanlim2</td>
<td>High</td>
<td>Log</td>
</tr>
<tr>
<td>Sanlim3</td>
<td>Low</td>
<td>Log</td>
</tr>
<tr>
<td>Sanlim4</td>
<td>High</td>
<td>Log</td>
</tr>
<tr>
<td>Sanlim5</td>
<td>High</td>
<td>Sawdust</td>
</tr>
<tr>
<td>Sanlim6</td>
<td>High</td>
<td>Sawdust</td>
</tr>
<tr>
<td>Sanlim7</td>
<td>High</td>
<td>Log</td>
</tr>
<tr>
<td>Sanlim8</td>
<td>Medium</td>
<td>Log</td>
</tr>
</tbody>
</table>

*Optimal temperature range for the formation of fruiting bodies.

*Corresponding author.
Phone) +82-31-290-1161, FAX +82-31-290-1020
E-mail) ewnohan@korea.kr
provided by the manufacturer (Promega Co., USA). The PCR started for 2 minutes at 95°C and continued with 38 cycles of 94°C (20 seconds), 55°C (40 seconds), and 72°C (2 minutes). The amplification product was run on 1.2% agarose gel, eluted from the gel, and cloned into a PCR cloning vector (pGEM-T; Promega Co., USA).

Analysis of the sequence. The sequences of the cloned fragments were determined by ABI 377 genetic analyzer and analyzed by the programs provided by the Baylor College of Medicine Search Launcher (http://searchlauncher.bcm.tmc.edu/). The ras promoter sequences of both Sanlims 3 and 4 were registered in the GenBank (NCBI) and, thus, could be accessed by the numbers AF479615 and 479616, respectively.

Results and Discussion

Difference in size of amplification products. Fig. 1 shows the PCR products of ras promoter region using the primers LE 1 and 2. Two strains (Sanlim 3 and 6) yielded smaller band (ca. 600bp) than did other strains (ca. 700bp). Based on the amplification products, 8 out of 10 Korean strains tested appeared to have the same size of promoter with that of the Japanese strain FMC2 reported by Kajiwara and Shishido (1992). However, Table 1 shows that the two strains, Sanlim 3 and Sanlim 4, were not as close to each other as to other strains with regards to cultivation temperature and media, although both had smaller ras promoters.

Sequence comparison. The nucleotide sequences of the ras promoter in the two different types (Sanlim 3 and Sanlim 4) were compared with those of the Japanese strain registered in the GenBank (NCBI). While Sanlim 4 appeared to have similar size to that of the Japanese strain, Sanlim 3 had a deletion in the ras promoter region. Fig. 2 shows the alignment of three sequences based on nucleotide homology. There was a 113bp deletion in the region in the strain Sanlim 3. Other than the deleted portion, only one base was different between the two Korean strains. The Korean strain Sanlim 4 was very similar to Japanese strain FMC2 in the promoter region. However, they differed by 16 bases from each other. This suggests that although the two types of Korean strains differ in the size of amplification products due to the deletion, they appeared to be closer to each other than to the Japanese variety (Fig. 3). At present, the significance of the deletion in the promoter region in some strains of this mushroom is not known yet. Since the strains showing the deletion are quite different from each other in their growth habit and culture, such deletion may not be significant at all in determining the characteristics described in Table 1. Although the promoter region has been structurally characterized by Hori et al. (1991) and Kajiwara and Shishido (1992), neither the expression pattern nor the regulation mechanism have been known. Chimeric genes

![Fig. 1. PCR amplification products of ras promoter region in 10 different strains of Lentinula edodes. Lane M: pGEM DNA molecular marker, Lanes 1 to 10 are Sanlim 1, 2, 3, 4, 5, 6, 7, 8, Poygo 16 and 164.](image-url)
are constructed by attaching the ras promoters to GUS gene. If transgenic mushrooms carrying the chimeric gene could be obtained, changes in their expression pattern during their life cycle could be detected.

References


