Label-free Detection of Biomolecular Specific Interaction by Optical Biosensors

광 바이오센서를 이용한 비표지 생계물질들의 특이 상호작용력의 측정

  • 김의락 (계명대학교 자연과학부 화학과) ;
  • 최정우 (서강대학교 공과대학 화학공학과)
  • Published : 2002.02.01

Abstract

Label-free optical methods for the monitoring of interactions between biological molecules have become increasingly popular within the last decade. A rising number of publications have demonstrated the benefits of direct biomolecular interaction analysis(BIA) for biology and biochemistry, such as antigen-antibody Interactions, receptor-ligand interactions, protein-DNA, DNA- intercalator, and DNA-DNA interactions. This article gives an overview of the historical development, principle and application of label-free optical biosensor to examine the functional characteristics of biospecific interaction, such as kinetics, affinity, and binding position of biomolecular between an immobilized species at the transducer surface and its dissolved binding partner.

Keywords

References

  1. Arch. Biochem. Biophys v.47 Studies of enzyme systems at a solid-liquid interface. Ⅰ. The system chymotrypsinserum albumin Trurnit, H. J. https://doi.org/10.1016/0003-9861(53)90465-2
  2. Arch. Biochem. Biophys. v.51 Studies on enzyme systems at a solid-liquid interface. Ⅱ. The kinetics of adsorption and reaction Trurnit, H. J. https://doi.org/10.1016/0003-9861(54)90466-X
  3. Phys. Med. Biol. v.22 no.3 Kinetics of protein adsorption and immunological reactions at a liquid/solid interface by ellipsometry Azzam, R. M.;Rigby, P. G.;Krueger, J. A. https://doi.org/10.1088/0031-9155/22/3/002
  4. Anal. Biochem. v.84 Ellipsometry as a tool to study protein films at liquid-solid interfaces Cuypers, P. A.;Hermes, W. T.;Hemker, H. C. https://doi.org/10.1016/0003-2697(78)90483-9
  5. Sens. Actuators v.4 Surface plasmon resonance for gas detection and biosensing Liedberg, B.;Nylander, C.;Lundstrom, I. https://doi.org/10.1016/0250-6874(83)85036-7
  6. Z. Phys. v.241 Die bestimmung optisher konstanten von metallen durch anregung von ober flachen plasma schwingungen Kretschmann, E. https://doi.org/10.1007/BF01395428
  7. Surface Sci. v.74 Surface plasmon spectroscopy of organic monolayer assemblies Pockrand, I.;Swalen, J. D.;Gordon, J. G.;Philpott, M. R. https://doi.org/10.1016/0039-6028(78)90283-2
  8. Am. J. phys. v.48 no.8 Plasmon surface polariton dispersion by direct optical observation Swalen, J. D.;Gordon, J. G.;Philpott, M. R.
  9. Sens. Actuators v.15 Integrated optical input grating couplers as biochemical sensors Nellen, P. M.;Tiefenthaler, K.;Lukosz, W. https://doi.org/10.1016/0250-6874(88)87017-3
  10. Biomaterials v.9 Quantitative analysis of immunological reactions on silicon surfaces by multiple-angle brewster angle reflectometry Stange, U.;Hutchins, M. G.;Groome, N.;Tarassenko, L. https://doi.org/10.1016/0142-9612(88)90070-1
  11. Appl. Opt. v.33 no.25 Integrated optical young interferometer Brandenburg, A.;Henniger, R. https://doi.org/10.1364/AO.33.005941
  12. Sens. Actuators B. v.18-19 Integrated optical difference interferometer as biochemical sensor Stamm, C.;Lukosz, W.
  13. Biosens. Bioelectron. v.8 The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I : Principle of operation and associated instrumentation Cush, R.;Cronin, J. M.;Stewart, W. J.;Maule, C. H.;Molloy, J.;Goddard, N. J. https://doi.org/10.1016/0956-5663(93)80073-X
  14. Biosens. Bioelectron. v.9 Characterzation of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application Striebel, C.;Brecht, A.;Gauglitz, G. https://doi.org/10.1016/0956-5663(94)80105-3
  15. Sens. Actuators. B. v.54 Compact surface plasmon resonance-transducers with spectral readout for biosensing applications Stemmler, I.;Brecht, A.;Gauglitz, G. https://doi.org/10.1016/S0925-4005(98)00317-7
  16. Science v.85 Built-up films of proteins and their properties Langmuir, I.;Schafer, V. J.
  17. Sens. Actuators B. v.11 Chemical and biochemical sensors based on interferometry at thin (multi-)layers Gauglitz, G.;Brecht, A.;Kraus, G.;Nahm, W. https://doi.org/10.1016/0925-4005(93)85234-2
  18. Sens. Actuators B. v.35-36 A commercial solution for surface plasmon sensing Melendez, J.;Carr, R.;Bartholomew, D. U.;Kukanskis, K.;Elkind, J.;Yee, S.;Furlong, C.;Woodbury, R.
  19. Anal. Chem. v.63 Vibrating mirror surface plasmon resonance immunosensor Kooyman, R. P. H.;Lenferink, A. T. M.;Eenink, R. G.;Greve, J. https://doi.org/10.1021/ac00001a017
  20. BIACORE
  21. Affinity Sensors' interests in evanescent wave biosensors started in the mid-1980's. In 1987 the company joined in research collaboration with GEC-Marconi and the Institute of Biotechnology, University of Cambridge, to investigate a new generation of evanescent wave sensors, the resonant mirror, resulting in the unique IAsys?/b> technology.
  22. Xantec
  23. TEXAS INSTRUMENTS
  24. Scand. J. Immunol. v.35 no.6 Real time analysis of antibody-antigen reaction kinetics Malmborg, A. C.;Michaelsson, A.;Ohlin, M.;Jansson, B.;Borrebaeck, C. A. K. https://doi.org/10.1111/j.1365-3083.1992.tb02970.x
  25. Biochemistry v.32 Thermodynamic analysis of an antibody functional epitope Kelley, R. F.;O'Connell, M. P. https://doi.org/10.1021/bi00078a005
  26. J. Immunol. Methods v.183 Measurement of kinetic binding constants of a panel of anti-saporin antibodies using a resonant mirror biosensor George, A. J. T.;French, R. R.;Glennie, M. J. https://doi.org/10.1016/0022-1759(95)00031-5
  27. J. Immunol. Methods v.201 Assenssment of affinity constants by rapid solid phase detection of equilibrium binding in a flow system Piehler, J.;Brecht, A.;Giersch, T.;Hock, B.;Gauglitz, G. https://doi.org/10.1016/S0022-1759(96)00222-0
  28. J. Immunol. Methods v.183 Screening and kinetic analysis of recombinant anti-CEA antibody fragments Abraham, R.;Buxbaum, S.;Link, J.;Smith, R.;Venti, C.;Darsley, M. https://doi.org/10.1016/0022-1759(95)00039-D
  29. Protein Eng. v.8 Properties of a singlechain antibody containing different linker peptides Alfthan, K.;Takkinen, K.;Sizmann, D.;Soderlund, H.;Teeri, T. https://doi.org/10.1093/protein/8.7.725
  30. J. Mol. Recogn. v.12 no.3 The use of biosensor technology for the engineering of antibodies and enzymes Huber, A.;Demartis, S.;Neri, D. https://doi.org/10.1002/(SICI)1099-1352(199905/06)12:3<198::AID-JMR458>3.0.CO;2-9
  31. Int. Immunol. v.7 no.11 Ligand binding kineties of IL-2 and IL-15 to heteromers formed by extrancellular domains of the three IL-2 receptor subunits Balasubramanian, S.;Chernov-Rogan, T.;Davis, A. M.;Whitehorn, E.;Tate, E.;Bell, M. P.;Zurawski, G.;Barrett, R. W. https://doi.org/10.1093/intimm/7.11.1839
  32. J. Biol. Chem. v.270 no.16 Binding interactions of human interleukin 5 with its receptor alpha subunit, Large scale production, structural, and functional studies of Drosophilaexpressed recombinant proteins Johanson, K.;Appelbaum, E.;Doyle, M.;Hensley, P.;Zhao, B.;Abdel-Meguid, S. S.;Young, P.;Cook, R.;Carr, S.;Matico, R.;Cusimano, D.;Dul, E.;Angelichio, M.;Brooks, I.;Winborne, E.;McDonnell, P.;Morton, T.;Bennett, D.;Sokoloski, T.;Mcnulty, D.;Rosenberg, M.;Chaiken, I. https://doi.org/10.1074/jbc.270.16.9459
  33. Nature v.368 B61 is a ligand for the ECK receptor protein-tyrosine kinase Bartley, T. D.;Hunt, R. W.;Welcher, A. A.;Boyle, W. J.;Parker, V. P.;Lindberg, R. A.;Lu, H. S.;Colombero, A. M.;Elliott, R. L.;Guthrie, B. A.;Holst, P. L.;Skrine, J. D.;Toso, R. J.;Zhang, M.;Fernandez, E.;Trail, G.;Varnum, B.;Yarden, Y.;Hunter, T.;Fox, G. M. https://doi.org/10.1038/368558a0
  34. Anal. Biochem. v.214 Lactose repressoroperator DNA interactions:kinetic analysis by a surface plasmon resonance biosensor Bondeson, K.;Frostell-Karlsson, A.;Fagerstam, L.;Magnusson, G. https://doi.org/10.1006/abio.1993.1484
  35. DNA Res. v.2 no.6 A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor Gotoh, M.;Hasegawa, Y.;Shinohara, Y.;Shimizu, M.;Tosu, M. https://doi.org/10.1093/dnares/2.6.285
  36. Anal. Chem. v.71 Interaction of chemically modified antisense oligonucleotides with sense DNA:a label-free interaction study with reflectometric interference spectroscopy Sauer, M.;Brecht, A.;Charisse, K.;Maier, M.;Gerster, M.;Stemmler, I.;Gauglitz, G.;Bayer, E. https://doi.org/10.1021/ac981057v
  37. Nucleic Acids Res. v.23 no.18 Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis(BIA) Bates, P. J.;Dosanjh, H. S.;Kumar, S.;Jenkins, T. C.;Laughton, C. A.;Neidle, S. https://doi.org/10.1093/nar/23.18.3627
  38. Biosens. Bioelectron. v.6 Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing Lukosz, W. https://doi.org/10.1016/0956-5663(91)80006-J
  39. Biosens. Bioelectron. v.10 Optical probes and transducers Brecht, A.;Gauglitz, G. https://doi.org/10.1016/0956-5663(95)99230-I
  40. Sensors Update v.1 Opto-Chemical and Opto-Immuno Sensors Gauglitz, G.;Blates, H.(ed.);Gopel, W.(ed.);Hesse, J.(ed.) https://doi.org/10.1002/1616-8984(199607)1:1<1::AID-SEUP1>3.0.CO;2-6
  41. Anal. Biochem. v.249 Lebel-free monitoring of DNA-ligand interactions Piehler, J.;Brecht, A.;Gauglitz, G.;Maul, C.;Zerlin, M.;Thiericke, R.;Grabley, S. https://doi.org/10.1006/abio.1997.2160
  42. J. Mol. Recogn. v.10 no.3 Optical biosensors Ramsden, J. R. https://doi.org/10.1002/(SICI)1099-1352(199705/06)10:3<109::AID-JMR361>3.0.CO;2-D
  43. Sens. Actuators B. v.38-39 Recent developments in optical transducers for chemical or biochemical applications Brecht, A.;Gauglitz, G.
  44. Fresenius J. Anal. Chem. v.362 Optical waveguide sensors in analytical chemistry:today's instrumentations, applications and trends for future development Potyrailo, R. A.;Hobbs, S. E.;Hieftje, G. M. https://doi.org/10.1007/s002160051086
  45. Biosensors: an Introduction Eggins, B. R.
  46. Chemical sensors and biosensors for medical and biological applications Spichiger-Keller, U. E.
  47. Commercial biosensors Application to clinical, bioprocess, and environmental samples Ramsay, G.
  48. J. Am. Chem. Soc. v.105 Adsorption of bifunctional organic disulfides on gold surfaces Nuzzo, R. G.;Allara, D. L. https://doi.org/10.1021/ja00351a063
  49. J. Am. Chem. Soc. v.111 Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold Bain, C. D.;Throughton, E. B.;Tao, Y-T.;Evall, J.;Whitessides, G. M.;Nuzzo, R. G. https://doi.org/10.1021/ja00183a049
  50. Nature of immobilized antibody layers linked to thioctic acid treated gold surfaces v.15 Smith, A. M.;Ducey Jr, M. W.;Meyerhott, M. E.
  51. Science v.166 no.905 Trypsin and papain covalently coupled to porous glass: preparation and chracterization Weetall, H. H. https://doi.org/10.1126/science.166.3905.615
  52. Biochim. Biophys. Acta. v.242 Porous glass as a solid support for immobilisation or affinity chromatography of enzymes Robinson, P. J.;Dunnill, P.;Lilly, M. D. https://doi.org/10.1016/0005-2744(71)90160-4
  53. J. Am. Chem. Soc. v.103 The nature of organosilane to silica-surface binding Waddell, T. G.;Leyden, D. E.;DeBello, M. T. https://doi.org/10.1021/ja00408a005
  54. J. Chem. Soc. Chem. Commun. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensor for fast and efficient covalent immobilization of ligands Lofas, S.;Johnsson, B. O.
  55. Biosens. Bioelectron v.11 Surface modification for direct immunoprobes Piehler, J.;Brecht, A.;Geckeler, K. E.;Gauglitz, G. https://doi.org/10.1016/0956-5663(96)83293-3
  56. Colloids Surf. B. v.13 Protein interactions in covalently attrached dextran layers Piehler, J.;Brecht, A.;Hehl, K.;Gauglitz, G. https://doi.org/10.1016/S0927-7765(99)00046-6
  57. J. Mol. Recog. v.8 Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies Johnsson, B.;Lofas, S.;Lindguis, G.;Edstrom, A.;Muller-Hillgreen;Hansson, A. https://doi.org/10.1002/jmr.300080122
  58. Biosens Bioelectron v.15 A high-density poly(ethylene glycol) Polymer brush for immobilization on glass-type surfaces Piehler, J.;Brecht, A.;Valiokag, R.;Liedberg, B.;Gauglitz, G. https://doi.org/10.1016/S0956-5663(00)00104-4
  59. Biochemistry v.32 Membrane insertion and antibody recognition of a glycosylphosphatidylinositolanchored protein:an optical study Ramsden, J. J.;Schneider, P. https://doi.org/10.1021/bi00053a017
  60. Biosens. Bioelectron. v.11 no.5 Immobilization of proteins to lipid bilayers Ramsden, J. J.;Bachmanova, G. I.;Archakov, A. I. https://doi.org/10.1016/0956-5663(96)86789-3
  61. Anal. Biochem. v.226 no.2 Phospholipid/Alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance Plant, A. L.;Brigham-Burke, M.;Petrella, E. C.;O'Shannessy, D. J. https://doi.org/10.1006/abio.1995.1234
  62. Protein Sci. v.4 Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes Heyse, S.;Vogel, H.;Sanger, M.;Sigrist, H. https://doi.org/10.1002/pro.5560041210
  63. Biochemistry v.37 Incorporation of rhodopsin in laterally structured supported membranes:observation of transducin activation with spatially and time-resolved surface plasmon resonance Heyse, S.;Ernst. P. E.;Dienses, Z.;Hofman, P. H.;Vogel, H. https://doi.org/10.1021/bi971564r
  64. Biochem. v.11 Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose Cuatrecasas, P.;Parikh. https://doi.org/10.1021/bi00762a013
  65. Anal. Biochem. v.205 Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector O'shannessy, D. J.;Brigham-Burke, M.;Peck, K. https://doi.org/10.1016/0003-2697(92)90589-Y
  66. J. Am. Chem. Soc. v.112 Ebersole, R.;Miller, J.;Moran, J.;Ward, M. https://doi.org/10.1021/ja00164a070
  67. Langmuir v.7 Biotin-functionalized self-assembled monolayers on gold: surface plasmon optical studies of specific recognition reactions Haussling, L.;Ringslorf, H.;Schmitt, F. J.;Knoll. W. https://doi.org/10.1021/la00057a001
  68. Sens. Actuators v.15 Surface plasmon resonance applied to immunosensing Daniels, P. B.;Deacon, J. K.;Eddowes, M. J.;Pedley, D. G. https://doi.org/10.1016/0250-6874(88)85013-3
  69. Anal. Chem. v.61 Avidin-biotin coupling as a general method for preparing enzyme-based fiber-optic sensors Luo, S.;Walt, D. R. https://doi.org/10.1021/ac00185a005
  70. Anal. Chem. v.64 Trypsinmodified fused-silica capillary microreactor for peptide mapping by capillary zone electrophoresis Amankwa, L. N.;Kuhr, W. G. https://doi.org/10.1021/ac00038a019
  71. Anal. Biochem. Birkert, O.;Haake, H-M.;Schutz, A.;Brecht, A.;Mack, J.;Jung, G.;Gauglitz, G.
  72. Anal. Biochem. v.252 BIAcore analysis of histidinetagged proteins using a chelatiing NTA sensor chip Nieba, L.;Nieba-Axmann, S. E.;Persson, A.;Hamalainen, M.;Edbratt, F.;Hannsson, A.;Lidholm, J.;Magnusson, K.;Karlsson, A. F.;Pluckthun, A. https://doi.org/10.1006/abio.1997.2326
  73. J. Immunol, Methods v.183 Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore surface plasmon resonance detector Gershon, P. D.;Khilko, S. https://doi.org/10.1016/0022-1759(95)00032-6
  74. Neuropharmacology v.35 no.7 Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxy1 terminus of Kir3.4 inward rectifier$K^+$ channel subunits Doupnik, C. A.;Dassauer, C. W.;Slepak, V. Z.;Gilman, A. G.;Davidson, N.;Lester, H. A. https://doi.org/10.1016/0028-3908(96)00125-6
  75. Biotechnology Tech. v.12 Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor Fratamico, P. M.;Strobaugh, T. P.;Medina, M. B.;Gehring, A. G. https://doi.org/10.1023/A:1008872002336
  76. J. Biol. Chem. v.27 Construction and binding kinetics of a soluble granulocyte-macrophage colony-stimulating factor receptor α-chain-Fc fusion protein Monfardini, C.;Ramamoorthy, M.;Rosenbaum, H.;Fang, Q.;Godillot, P. A.;Canziani, G.;Chaiken, I. M.;Williams, W. V.
  77. Anal. Chem. v.66 Surface-enhanced raman gene probes Vo-Dinh, T.;Houck, K.;Stokes, D. L. https://doi.org/10.1021/ac00092a014
  78. Anal. Chem. v.70 Surface enhanced raman gene probe for HIV detection Isola, N.;Stokes, D. L.;Vo-Dinh, T. https://doi.org/10.1021/ac970901z
  79. Chem. Br. v.30 Making light Work Blum, L. J.;Coulet, R. R.
  80. Analyst v.118 Optical chemical sensors:transduction and signal processing Narayanaswamy, R. https://doi.org/10.1039/an9931800317
  81. Sensors and Actuators B. v.17 Development of prototype gas sensor using surface plasmon resonance on gratings Jory, M. J.;Vukusic, P. S.;Sambles, J. R. https://doi.org/10.1016/0925-4005(93)00871-U
  82. Sensor and Actuators B. v.29 Waveguide surface plasmon resonance sensors Harris, R. D.;Wilkinson, J. S. https://doi.org/10.1016/0925-4005(95)01692-9
  83. Biosensors and Bioelectronics v.10 Biosensing with surface plasmon resonance - now it all started Liedberg, B.;Nylander, C.;Lundstrom, I. https://doi.org/10.1016/0956-5663(95)96965-2
  84. Biophysical J. v.70 Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport Schuck, P. https://doi.org/10.1016/S0006-3495(96)79681-9
  85. J. Collid Interface Sci. v.143 Quantitative determination of surface concentration of protein with surface concentration of protein with surface plasmon resonance using radiolabeled proteins Stenberg, E.;Persson, B.;Roos, H.;Urbaniczky, C. https://doi.org/10.1016/0021-9797(91)90284-F
  86. Anal. Biochem. v.228 Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities Kalsson, R.;Stahlberg, R. https://doi.org/10.1006/abio.1995.1350
  87. Biosens. Bioelectron. v.14 SPR biosensors:simultaneously removing thermal and bulk-composition effects O'Brien, M. J.;Brueck, S. R. J.;Perez-Luna, V. H.;Tender, L. M.;Lopez, G. P. https://doi.org/10.1016/S0956-5663(98)00121-3
  88. Fresenius J. Anal. Chem. v.359 Lebel free binding assay with spectroscopic detection for pharmaceutical screening Rothmund, M.;Brecht, A.;Berthel, G.;Grafe, D.;Schutz, A.;Gauglitz, G. https://doi.org/10.1007/s002160050529
  89. J. Immunol. Methods v.145 Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system Karlsson, R.;Michaelsson, A.;Mattsson, L. https://doi.org/10.1016/0022-1759(91)90331-9
  90. Curr Opin Biotechnol. v.5 Determination of kinetic rate and equilibrium binding constants for macromolecular interactions:a critique of the surface plasmon resonance literature O'shannessy, D. J. https://doi.org/10.1016/S0958-1669(05)80072-2
  91. Anal. Biochem. v.212 Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance:use of nonlinear least squares analysis methods O'shannessy, D. J.;Brigham-Burke, M.;Soneson, K. K.;Hensley, P.;Brooks, I. https://doi.org/10.1006/abio.1993.1355
  92. Anal. Biochem. v.227 Interpreting complex binding kinetics from optical biosensors a comparison of analysis by linearization, the integrated rate equation, and numerical integration Morton, T. A.;Myszka, D. G.;Chaiken, I. M. https://doi.org/10.1006/abio.1995.1268
  93. J. Biotechnol. v.48 Analysis of kinetic data of antibody-antigen interaction from an optical biosensor by exponential curve fitting Gill, A.;Leatherbarrow, R. J.;Hoare, M.;Pollard-Knight, D. V.;Lowe, R. A.;Fortune, D. H. https://doi.org/10.1016/0168-1656(96)01410-1
  94. Biochem. Biophys. Res. Com. v.225 Global anlysis of a macromolecular interaction measured on BIAcore Roden, L. D.;Myszka, D. G. https://doi.org/10.1006/bbrc.1996.1297
  95. Anal. Biochem. v.234 Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics Nieba, L.;Krebber, A.;Pluckthun, A. https://doi.org/10.1006/abio.1996.0067
  96. Anal. Biochem. v.213 Antigen-antibody binding and mass transport by convection and diffusion to a surface:a two-dimensional computer modes of binding and dissociation kinetics Glaser, R. https://doi.org/10.1006/abio.1993.1399
  97. Companion Methods Enzymol. v.6 Kinetic and concentration analysis using BIA technology Karlsson, R.;Roos, H.;Fagerstam, L.;Persson, B. https://doi.org/10.1006/meth.1994.1013
  98. Anal. Chem. v.63 Integrated fluid handling system for biomolecular interaction analysis Sjolander, S.;Urbaniczky, C. https://doi.org/10.1021/ac00020a025
  99. Biophys. Chem. v.64 Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor Myszka, D. G.;Morton, T. A.;Doyle, M. L.;Chaiken, I. M. https://doi.org/10.1016/S0301-4622(96)02230-2
  100. Anal. Biochem. v.240 Analysis of mass transport-limited binding kinetics in evanescent wave biosensors Schuck, P.;Minton, A. P. https://doi.org/10.1006/abio.1996.0356
  101. Anal. Biochem. v.235 Demonstration of an upper limit to the range of association rate constants amenable to study by biosensor technology based on surface plasmon resonance Hall, D. R.;Cann, J. R.;Winzor, D. J. https://doi.org/10.1006/abio.1996.0109
  102. Biophys. J. v.40 Role of diffusion in ligand binding to macromolecules and cell-bound receptors Shoup, D.;Szabo, A. https://doi.org/10.1016/S0006-3495(82)84455-X
  103. Anal. biochem. v.231 Kinetics of protein-protein interactions at the surface of an optical biosensor Edwards, P. R.;Gill, A.;Pollard-Knight, D. V.;Hoare, M.;Buckle, P. E.;Lowe, P. A.;Leatherbarrow, R. J. https://doi.org/10.1006/abio.1995.1522
  104. Anal. Biochem. v.265 Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor Schuck, P.;Millar, D. B.;Kortt, A. A. https://doi.org/10.1006/abio.1998.2872
  105. Anal. Biochem. v.246 Determination of association rate constants by an optical biosensor using initial rate analysis Edwards, P. R.;Leatherbarrow, R. J. https://doi.org/10.1006/abio.1996.9922
  106. Anal. Chim. Acta. v.311 A direct optical immunosensor for atrazine detection Brecht, A.;Piehler, J.;Lang, G.;Gauglitz, G. https://doi.org/10.1016/0003-2670(95)00120-O
  107. Anal. Chem. v.68 Affinity detection of low molecular weight analystes Piehler, J.;Brecht, A.;Gauglitz, G. https://doi.org/10.1021/ac9504878
  108. Biosens Bioelctron v.12 Specific binding of low molecular weight ligands with direct optical detection Piehler, J.;Brecht, A.;Gauglitz, G.;Maul, C.;Grabley, S.;Zerlin, M. https://doi.org/10.1016/S0956-5663(97)00010-9
  109. Biosens Bioelectron. v.13 An optical biosensor for real-time chromatography monitoring: breakthrough determination Bracewell, D. G.;Gill, A.;Hoare, M.;Lowe, P. A.;Maule, C. H. https://doi.org/10.1016/S0956-5663(98)00051-7
  110. Anal. Chem. v.72 no.6 Label-free biochemical detection coupled on-line to liquid chromatography Haake, H-M.;de Best, L.;Irth, H.;Abuknesha, R.;Brecht, A. https://doi.org/10.1021/ac991157g
  111. Anal. Biochem. v.244 BIA/MS:interfacing biomolecular interaction analysis with mass spectrometry Krone, J. R.;Nelson, R. W.;Dogruel, D.;Willians, P.;Granzow, R. https://doi.org/10.1006/abio.1996.9871