Evidence for a Common Molecular Basis for Sequence Recognition of N3-Guanine and N3-Adenine DNA Adducts Involving the Covalent Bonding Reaction of (+)-CC-1065

  • Published : 2002.02.01

Abstract

The antitumor antibiotic (+)-CC-1065 can alkylate N3 of guanine in certain sequences. A previous high-field $^1H$ NMR study on the$(+)-CC-1065d[GCGCAATTG*CGC]_2$ adduct ($^*$ indicates the drug alkylation site) showed that drag modification on N3 of guanine results in protonation of the cross-strand cytosine [Park, H-J.; Hurley, L. H. J. Am. Chem. Soc.1997, 119,629]. In this contribution we describe a further analysis of the NMR data sets together with restrained molecular dynamics. This study provides not only a solution structure of the (+)-CC-1065(N3- guanine) DNA duplex adduct but also new insight into the molecular basis for the sequence- specific interaction between (+)-CC-1065 and N3-guanine in the DNA duplex. On the basis of NOESY data, we propose that the narrow minor groove at the 7T8T step and conformational kinks at the junctions of 16C17A and 18A19T are both related to DNA bending in the drugDNA adduct. Analysis of the one-dimensional $^1H$ NMR (in $H_2O$) data and rMD trajectories strongly suggests that hydrogen bonding linkages between the 8-OH group of the (+)-CC-1065 A-sub-unit and the 9G10C phosphate via a water molecule are present. All the phenomena observed here in the (+)-CC-1065(N3-guanine) adduct at 5'$-AATTG^*$are reminiscent of those obtained from the studies on the (+)-CC-1065(N3-adenine) adduct at $5'-AGTTA^*$, suggesting that (+)-CC-1065 takes advantage of the conformational flexibility of the 5'-TPu step to entrap the bent structure required for the covalent bonding reaction. This study reveals a common molecular basis for (+)-CC-1065 alkylation at both $5'-TTG^*$ and $5'-TTA^*$, which involves a trapping out of sequence-dependent DNA conformational flexibility as well as sequence-dependent general acid and general base catalysis by duplex DNA.

Keywords

References

  1. Asai, A., Nagamura, S., and Saito, H. A Novel Property of Duocar-mycin and Its Analogs for Covalent Reaction with DNA. J. Am. Chem. Soc., 116, 4171-4177 (1994) https://doi.org/10.1021/ja00089a004
  2. Asai, A., Nagamura, S., Saito, H., Takahashi, I., and Nakano,H. The reversible DNA-alkylating activity of duocarmycin and its analogues. Nucleic Acids Res., 22, 88-93 (1994) https://doi.org/10.1093/nar/22.1.88
  3. Baird, R. and Winstein, S. Neighboring carbon and hydrogen. LI. Dienones from Ar1q-3 participation. Isolation and behavior of spiro[2,5]octa-1,4-dien-3-one. J. Am. Chem. Soc., 85, 567-578 (1963) https://doi.org/10.1021/ja00888a020
  4. Barber, A. M. and Zhurkin, V. B. CAP binding sites reveal pyrimidine-purine pattern characteristic of DNA bending. J. Biomol. Struct. Dyn., 8, 213-232 (1990) https://doi.org/10.1080/07391102.1990.10507803
  5. Boger, D. L., Ishizaki, T, and Zarrinmayeh, H. Isolation and characterization of the duocarmycin-adenine DNA adduct. J. Am. Chem. Soc., 113, 6645-6649 (1991) https://doi.org/10.1021/ja00017a042
  6. Boger, D. L. and Mesini, P. DNA Alkylation Properties of CC1065 and Duocarmycin Analogs Incorporating the 2,3,10, 10a-Tetrahydrocyclopropa[d]benzo[f]quinol-5-one Alkylation Subunit: Identification of Subtle Structural Features That Contribute to the Regioselectivity of the Adenine N3 Alkylation Reaction. J. Am. Chem. Soc., 117, 11647-11655 (1995) https://doi.org/10.1021/ja00152a004
  7. Boger, D. L., Han, N., Tarby, C. M., Boyce, C. W., Cai, H., Jin, Q., and Kitos, P. A. Synthesis, Chemical Properties, and Preliminary Evaluation of Substituted CBI Analogs of CC1065 and the Duocarmycins Incorporating the 7-Cyano-1,2, 9,9a-tetra-hydrocyclopropa[c]benz[e]indol-4-0ne Alkylation Subunit: Hammett Quantitation of the Magnitude of Electronic Effects on Functional Reactivity. J. Org. Chem., 61, 4894-4912 (1996) https://doi.org/10.1021/jo9605298
  8. Boger, D. L. and Garbaccio, R. M., Jin, Q. Synthesis and Evaluation of CC-1065 and Duocarmycin Analogs Incorporating the Iso-CI and Iso-CBI Alkylation Subunits: Impact of Relocation of the C-4 Carbonyl. J. Org. Chem., 62, 8875-8891 (1997) https://doi.org/10.1021/jo971686p
  9. Boger, D. L. and Turnbull, P. Synthesis and Evaluation of CC1065 and Duocarmycin Analogs Incorporating the 1,2,3,4, 11, 11a-Hexahydrocyclopropa[c]naphtho[2,1-b]azepin-6-one (CNA) Alkylation Subunit: Structural Features that Govern Reactivity and Reaction Regioselectivity. J. Org. Chem., 62, 5849-5863 (1997) https://doi.org/10.1021/jo9707085
  10. Borgias, B. A., Thomas, P. D., and James, T.L. Complete Relaxation Analysis (CORMA). University of California, San Francisco, (1989)
  11. Borgias, B. A., Gochin, M., Kerwood, D. J., and James T L. Relaxation matrix analysis of 2D NMR data. Prog. Nucl. Magn. Reson. Spectrosc., 22, 83100 (1990)
  12. Chuprina, V. P., Lipanov, A. A, Fedoroff, O., Kim, S. G., Kintanar, A., and Reid, B. R. Sequence effects on local DNA topology. Proc. Natl. Acad. Sci. U.S.A., 88, 9087-9091 (1991) https://doi.org/10.1073/pnas.88.20.9087
  13. Churchill, M. E., Jones, D. N., Glaser, T., Hefner, H., Searles, M. A., and Travers, A. A. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG. EMBO Journal, 14, 1264-1275(1995)
  14. Colominas, C., Luque, F. J., and Orozco, M. Tautomerism and Protonation of Guanine and Cytosine. Implications in the Formation of Hydrogen-Bonded Complexes. J. Am. Chem. Soc., 118, 6811-6821 (1996) https://doi.org/10.1021/ja954293l
  15. Colson, A. -O., Besler, B., and Sevilla, M. D. Ab initio molecular orbital calculations on DNA base pair radical ions: effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials. J. Phys. Chem., 96, 9787-9794 (1992) https://doi.org/10.1021/j100203a039
  16. Han, F. X. and Hurley, L. H. A model for the T-antigen-induced structural alteration of the SV40 replication origin based upon experiments with specific probes for bent, straight, and unwound DNA. Biochemistry, 35, 7993-8001 (1996) https://doi.org/10.1021/bi960251d
  17. Hanka, L. J., Dietz, A., Gerpheide, S. A., Kuentzel, S. L., and Martin, D. G. CC-1065 (NSC-298223), a new antitumor antibiotic. Production, in vitro biological activity, microbiological assays and taxonomy of the producing microorganism. J. Antibiot., 31, 1211-1217 (1978) https://doi.org/10.7164/antibiotics.31.1211
  18. Hassan, M. A. and Calladine, C. R. Propeller-twisting of basepairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol., 259, 95-103 (1996) https://doi.org/10.1006/jmbi.1996.0304
  19. Hassan, M. A. and Calladine, C. R. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol., 282, 331-343 (1998) https://doi.org/10.1006/jmbi.1998.1994
  20. Hurley, L. H., Reynolds, V. L., Swenson, D. H., Petzold, G. L., and Scahill, T. A. Reaction of the antitumor antibiotic CC1065 with DNA: structure of a DNA adduct with DNA sequence specificity. Science, 226, 843-844 (1984) https://doi.org/10.1126/science.6494915
  21. Hurley, L. H., Warpehoski, M. A., Lee, C. -S., McGovren, J. P, and Scahill, T. A.; Kelly, K. C., Wicnienski, N. A., Gebhard, I., Bradford, V. S. Sequence specificity of DNA alkylation by the unnatural enantiomer of CC-1065 and its synthetic analogs. J. Am. Chem. Soc., 112 ,4633-4649 (1990) https://doi.org/10.1021/ja00168a003
  22. Hurley, L. H. and Draves, P. H. In Molecular Aspects of Anticancer DrugDNA Interactions; Vol. 2; Neidle, S., Waring, M. J., Eds.; The Macmillan Press Ltd., London, pp 89133 (1993)
  23. Hutter, M. and Clark, T. On the Enhanced Stability of the Guanine-Cytosine Base-Pair Radical Cation. J. Am. Chem. Soc., 118, 7574-7577 (1996) https://doi.org/10.1021/ja953370+
  24. Ichimura, M., Ogawa, T., Katsumata, S., Takahashi, K., Takahashi, I., and Nakano, H. Duocarmycins, new antitumor antibiotics produced by Streptomyces; producing organisms and improved production. J. Antibiot., 44, 1045-1053 (1991) https://doi.org/10.7164/antibiotics.44.1045
  25. Jencks, W. P. (chapter 3) in Catalysis in Chemistry and Enzymology, Dover, New York, (1987)
  26. Katahira, M., Sugeta, H., Kyogoku, Y., Fujii, S., Fujisawa, R., and Tomita, K. One- and two-dimensional NMR studies on the conformation of DNA containing the oligo(dA)oligo(dT) tract. Nucleic Acids Res., 16, 8619-8632 (1988) https://doi.org/10.1093/nar/16.17.8619
  27. Katahira, M., Sugeta, H., and Kyogoku, Y. A new model for the bending of DNAs containing the oligo(dA) tracts based on NMR observations. Nucleic Acids Res., 18, 613-618 (1990) https://doi.org/10.1093/nar/18.3.613
  28. Kim, S. -G. and Reid, B. R. Solution structure of the TnAn DNA duplex GCCGTIAACGCG containing the Hpal restriction site. Biochemistry, 31, 12103-12116 (1992) https://doi.org/10.1021/bi00163a020
  29. Kintanar, A., Klevit, R. E., and Reid, B. R. Two-dimensional NMR investigation of a bent DNA fragment: assignment of the proton resonances and preliminary structure analysis. Nucleic Acids Res., 15, 5845-5862 (1987) https://doi.org/10.1093/nar/15.14.5845
  30. Krueger, W. C., Li, L. H., Moscowitz, A.., Prairie, M. D., Petzold, G., and Swenson, D. H. Binding of CC-1065 to poly- and oligonucleotides. Biopolymers, 24, 1549-1572 (1985) https://doi.org/10.1002/bip.360240811
  31. Krueger, W. C. and Prairie, M. D. A circular dichroism study of the binding of CC-1065 to B and Z form poly(dl-5BrdC). poly(dl-5BrdC). Chem. -Biol. Interact., 62, 281-295 (1987) https://doi.org/10.1016/0009-2797(87)90028-7
  32. Lam, S. L. and Au-Yeung, S. C. SeqJence-specific local structural variations in solution structures of d$(CGXX`CG)_2$ and d$(CAXX`TG)_2$ self-complementary deoxyribonucleic acids. J. Mol. Biol., 266, 745-60 (1997) https://doi.org/10.1006/jmbi.1996.0783
  33. Lamm, G. and Pack, G.R. Acidic domains around nucleic acids. Proc. Natl. Acad. Sci. U.S.A., 87, 9033-9036 (1990) https://doi.org/10.1073/pnas.87.22.9033
  34. Lee, C. S., Sun, D., Kizu, R., and Hurley, L. H. Determination of the structural features of (+)-CC-1065 that are responsible for bending and winding of DNA. Chem. Res. Toxicol., 4, 203-213 (1991) https://doi.org/10.1021/tx00020a013
  35. Lee, C. -S. and Gibson, N. W. DNA interstrand cross-links induced by the cyclopropylpyrroloindole antitumor agent bizelesin are reversible upon exposure to alkali. Biochemistry, 32, 9108-9114 (1993) https://doi.org/10.1021/bi00086a015
  36. Lee, S. -J., Park, H. -J., and Hurley, L. H. Unpublished results
  37. Lin, C. H. and Hurley, L. H. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies. Biochemistry, 29, 9503-9507 (1990) https://doi.org/10.1021/bi00493a002
  38. Lin, C. H. Use of High-Field NMR in Combination with StableIsotope Labeled Oligomers to Probe the Reaction of (+)-CC-1065 with DNA. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, August (1991)
  39. Lin, C. H., Beale, J. M., and Hurley, L. H. Structure of 곧 (+)-CC-1065-DNA adduct: critical role of ordered water molecules and implications for involvement of phosphate catalysis in the covalent reaction. Biochemistry, 30, 3597-3602 (1991) https://doi.org/10.1021/bi00229a002
  40. Lin, C. H. and Sun, D., Hurley, L. H. (+)-CC-1065 produces bending of DNA that appears to resemble adenine/thymine tracts. Chem. Res. Toxicol., 4, 21-26 (1991) https://doi.org/10.1021/tx00019a003
  41. Lin, C. H., Hill, G. C., and Hurley, L. H. Characterization of a 12mer duplexd(GGCGGAGTTAGG).d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1Hand 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations. Chem. Res. Toxicol., 5, 167-182 (1992) https://doi.org/10.1021/tx00026a005
  42. Lin, C. H. and Patel, D. J. SOlution structure of the covalent duocarmycin A-DNA duplex complex. J. Mol. Biol., 248, 162-179 (1995) https://doi.org/10.1006/jmbi.1995.0209
  43. Martin, D. G., Biles, C., Gerpheide, S. A., Hanka, L. J., Krueger, W. C., McGovren, J. P., Mizsak, S. A., Neil, G. L., Stewart, J. C., and Visser, J. CC-1065 (NSC 298223), a potent new antitumor agent improved production and isolation, characterization and antitumor activity. J. Antibiot., 34, 1119-1125 (1981) https://doi.org/10.7164/antibiotics.34.1119
  44. McNamara, P. T., Bolshoy, A., Trifonov, E. N., and Harrington, R. E. Sequence-dependent kinks induced in curved DNA J. Biomol. Struct. Dyn., 8, 529-538 (1990) https://doi.org/10.1080/07391102.1990.10507827
  45. Mergny, J. -L., Lacroix, L., Han, X., Leroy, J -L., and Helene, C. Intramolecular Folding of Pyrimidine Oligodeoxynucleotides into an i-DNA Motif. J. Am. Chem. Soc., 117, 8887-8898 (1995) https://doi.org/10.1021/ja00140a001
  46. Mitchell, M. A., Weiland, K. L., Aristoff, P.A., Johnson, P. D., and Dooley, T P. Sequence-selective guanine reactivity by duocarmycin A. Chem. Res. Toxicol., 6, 421-424 (1993) https://doi.org/10.1021/tx00034a005
  47. Mujeeb, A, Kerwin, S. M., Kenyon, G. L., and James, T L. Solution structure of a conserved DNA sequence from the HIV-1 genome: restrained molecular dynamics simulation with distance and torsion angle restraints derived from two-dimensional NMR spectra. Biochemistry, 32, 13419-13431 (1993) https://doi.org/10.1021/bi00212a007
  48. Nadeau, J. G. and Crothers, D. M. Structural basis for DNA bending. Proc. Natl. Acad. Sci. U.S.A., 86, 2622-2626 (1989) https://doi.org/10.1073/pnas.86.8.2622
  49. Nagaich, A. K., Bhattacharyya, D., Brahmachari, S. K., and Bansal, M. CA/TG sequence at the 5' end of oligo(A)-tracts strongly modulates DNA curvature. J. Biol Chem., 269, 7824-7833 (1994)
  50. Needham-VanDevanter, D. R., Hurley, L. H., Reynolds, V. L., Theriault, N. Y., Krueger, W. C., and Wierenga, W. Characterization of an adduct between CC-1065 and a defined oligodeoxynucleotide duplex. Nucleic Acids Res., 12, 6159-6168 (1984) https://doi.org/10.1093/nar/12.15.6159
  51. Park, H. -J. and Hurley, L. H. Covalent Modification of N3 of Guanine by (+)-CC-1065 Results in Protonation of the Cross-Strand Cytosine. J. Am. Chem. Soc., 119, 629-630 (1997) https://doi.org/10.1021/ja9632264
  52. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Ferguson, D. M., Seibel, G. L., Singh, C., Weiner, P. K., and Kollman, P. A AMBER 4.1, University of California: San Francisco, (1995)
  53. Radhakrishnan, I., Gao, X., Santos, C. d. I., Live, D., and Patel, D. J. NMR structural studies of intramolecular (Y+)$_n$(R+)$_n$(Y-)$_n$DNA triplexes in solution: imino and amino proton and nitrogen markers of G.TA base triple formation. Biochemistry, 30, 9022-9030 (1991) https://doi.org/10.1021/bi00101a016
  54. Radhakrishnan, I., Patel, D. J., Priestly, E. S., Nash, H. M., and Dervan, P. B. NMR structural studies on a nonnatural deoxyribonucleoside which mediates recognition of GC base pairs in pyrimidine-purine-pyrimidine DNA triplexes. Biochemistry, 32, 11228-11234 (1993) https://doi.org/10.1021/bi00092a037
  55. Reynolds, V. L., Molineux, I. J., Kaplan, D. J., Swenson, D. H., and Hurley, L. H. Reaction of the antitumor antibiotic CC1065 with DNA Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. Biochemistry, 24, 6228-6237 (1985) https://doi.org/10.1021/bi00343a029
  56. Reynolds, V. L., McGovren, J. P, and Hurley, L. H. The chemistry, mechanism of action and biological properties of CC-1065, a potent antitumor antibiotic. J. Antibiot., 39, 319-334 (1986) https://doi.org/10.7164/antibiotics.39.319
  57. Robinson, H. and Wang, A. H. 5'-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. Natl. Acad. Sci. U.S.A., 90, 5224-5228 (1993) https://doi.org/10.1073/pnas.90.11.5224
  58. Rohozinski, J., Hancock, J. M., and Keniry, M. A. Polycytosine regions contained in DNA hairpin loops interact via a fourstranded, parallel structure similar to the i-motif. Nucleic Acids Res., 22, 4653-4659 (1994) https://doi.org/10.1093/nar/22.22.4653
  59. Santos, C. d. I., Rosen, M., and Patel, D. NMR studies of DNA (R+)n.(Y-)n.(Y+)n triple helices in solution: imino and amino proton markers of T.A.T and C.G.C+ base-triple formation. Biochemistry, 28, 7282-7289 (1989). https://doi.org/10.1021/bi00444a021
  60. Schowen, R. L. (chapter 2), and Maggiora, G. and Christoffersen, R. (chapter 3), in Transition States of Biochemical Processes, eds. Gandour, R. and Schowen, R. L., Plenum, New York, (1978)
  61. Schultz, S. C., Shields, G. C., and Steitz, T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science, 253, 1001-1007 (1991) https://doi.org/10.1126/science.1653449
  62. Sugiyama, H., Ohmori, K., Chan, K. L., Hosoda, M., Asai, A., Saito, H., and Saito, I. A novel guanine N3 alkylation by antitumor antibiotic duocarmycin A. Tetrahedron Lett., 34, 2179-2182 (1993) https://doi.org/10.1016/S0040-4039(00)60376-3
  63. Sugiyama, H., Lian, C., Isomura, M., Saito, I., and Wang, A. H. Distamycin A modulates the sequence specificity of DNA alkylation by duocarmycin A Proc. Natl Acad. Sci. U.S.A., 93, 14405-14410 (1996) https://doi.org/10.1073/pnas.93.25.14405
  64. Sun, D., Lin, C. H., and Hurley, L. H. A-tract and (+)-CC-1065 induced bending of DNA. Comparison of structural features using non-denaturing gel analysis, hydroxyl-radical footprinting, and high-field NMR. Biochemistry, 32, 4487-4495 (1993) https://doi.org/10.1021/bi00068a003
  65. Sun, D., Hurley, L. H. Cooperative bending of the 21-base-pair repeats of the SV40 viral early promoter by human Sp1. Biochemistry, 33, 9578-9587 (1994) https://doi.org/10.1021/bi00198a025
  66. Takahashi, I., Takahashi, K., Ichimura, M., Morimoto, M., Asano, K., Kawamoto, I., Tomita, F., and Nakano, H. Duocarmycin A, a new antitumor antibiotic from Streptomyces. J. Antibiot., 41, 1915-1917 (1988) https://doi.org/10.7164/antibiotics.41.1915
  67. Warpehoski, M. A., Gebhard, I., Kelly, R. C., Krueger, W. C., Li, L. H., McGovren, J. P., Prairie, M. D., Wicnienski, N., and Wierenga, W. Stereoelectronic factors influencing the biological activity and DNA interaction of synthetic antitumor agents modeled on CC-1065. J. Med. Chem., 31, 590-603 (1988) https://doi.org/10.1021/jm00398a017
  68. Warpehoski, M. A. and Hurley, L. H. Sequence selectivity of DNA covalent modification. Chem. Res. Toxicol., 1, 315-333 (1988) https://doi.org/10.1021/tx00006a001
  69. Warpehoski, M. In Advances in DNA Sequence Specific Agents, Vol. 1; Hurley, L. H., Ed.; JAI Press Inc.: Greenwich, CT, pp 217245 (1992)
  70. Warpehoski, M. A., Harper, D. E., Mitchell, M. A., and Monroe T. J. Reversibility of the covalent reaction of CC-1065 and analogues with DNA. Biochemistry, 31, 2502-2508 (1992) https://doi.org/10.1021/bi00124a009
  71. Warpehoski, M. A. and Harper, D. E. Acid-Dependent Electrophilicity of Cydopropylpyrroloindoles. Nature's Masking Strategy for a Potent DNA Alkylator. J. Am. Chem. Soc., 116, 7573-7580 (1994) https://doi.org/10.1021/ja00096a014
  72. Warpehoski, M. A. and Harper, D. E. Enzyme-like Rate Acceleration in the DNA Minor Groove. Cyclopropylpyrroloindoles as Mechanism-Based Inactivators of DNA. J. Am. Chem. Soc., 117, 2951-2952 (1995) https://doi.org/10.1021/ja00115a040
  73. Weisz, K., Shafer, R. H., Egan, W., anc James, T. L. Solution structure of the octamer motif in immunoglobulin genes via restrained molecular dynamics calculations. Biochemistry, 33, 354-366 (1994) https://doi.org/10.1021/bi00167a046
  74. Yamamoto, K., Sugiyama, H., and Kawarishi, S. Concerted DNA recognition and novel site-specific alkylation by duocarmycin A with distamycin A. Biochemistry, 32, 1059-1066 (1993) https://doi.org/10.1021/bi00055a010
  75. Yuan, Y. -C., Seaman, F. C., Hurley, L. H. Unpublishec results