DOI QR코드

DOI QR Code

Characteristics of Carbon Nanotube with Synthetic Conditions in Catalytic Chemical Vapor Deposition

촉매 화학 기상 증착법의 제조 조건에 따른 탄소 나노튜브의 특성

  • 김현진 (단국대학교, 신소재공학과) ;
  • 이임렬 (단국대학교, 신소재공학과)
  • Published : 2002.06.01

Abstract

Carbon nanotubes were synthesized at various conditions using Ni-catalytic thermal chemical vapor deposition method and their characteristic properties were investigated by SEM, TEM and Raman spectroscopy. Carbon nanotubes were formed on very fine Ni-catalytic particles. The carbon nanotubes synthesized by thermal decomposition of acetylene at $700^{\circ}C$ had a coiled shape, while those synthesized at $850^{\circ}C$ showed a curved and Y-shape having a bamboo-like morphology. It was found that the carbon nanotube was also made on the fine Ni-catalytic particles formed on the surface of 100~400nm sized large ones after pretreatment with $NH_3$.ber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

Keywords

References

  1. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett., 68, 1579 (1992) https://doi.org/10.1103/PhysRevLett.68.1579
  2. J.M. Bonard, J.P. Salvetat, T. Stockli, L. Forro and A. Chatelain, Appl. Phys., A 69, 245 (1999) https://doi.org/10.1007/s003390050998
  3. C. Nutzenadel, A. Zuttel, D. Chartouni and L. Schlapbach, Electrochem. Solid-State Lett., 2, 30 (1999) https://doi.org/10.1149/1.1390724
  4. Q. Zhang, S.F. Yoon, J. Ann, B. Gan, Rusil and H.B. Lu, J. Phys. & Chem. of Solid, 61, 1179 (2000) https://doi.org/10.1016/S0022-3697(99)00383-2
  5. M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee and J. W. Park, Diamond and Related Materials, 10, 1235 (2001) https://doi.org/10.1016/S0925-9635(00)00446-5
  6. M Yadasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura and E. Ota, Appl. Phys. Lett, 67(17), 2477 (1995) https://doi.org/10.1063/1.114613
  7. C.J. Lee, J.H. Lee, S.Y. Kang and J. H. Lee, Chem. Phys. Lett., 323, 554 (2000) https://doi.org/10.1016/S0009-2614(00)00521-2
  8. K. Hermadi, A. Fonseca, J.B. Nagy, A. Siska and I. Kiricsi, Appl. Catalysis, A 199, 245 (1999) https://doi.org/10.1016/S0926-860X(99)00561-X
  9. Y.C. Choi, Y.M. Shin, D.B. Bae, S.C. Lim, Y.H., Lee and B.S. Lee, Diamond and Related Materials, 10, 1457 (2001) https://doi.org/10.1016/S0925-9635(00)00364-2
  10. P. Simonis, A. Volodin, E. Seynaeve, P. Lambin and C. V. Haesendonck, in Science and Application of Nanotubes, ed D. Tomaneck and R. J. Embody (Kluwer academic, New York, USA, 1999) p.83
  11. N. He, Y. Kuang, Q. Dai, Y. Miao, A. Zhang, K. Song, Z. Lu and C. Yuan, Mat. Sci. Engr., C 8-9, 151 (1999) https://doi.org/10.1016/S0928-4931(99)00017-X
  12. H.M. Cheng, F. Li, S. Su, H.Y. Pan, L.L. He, X. Sun and M.S. Dresselhaus, Appl. Phys. Lett., 72(25), 3282 (1998) https://doi.org/10.1063/1.121624
  13. L.C. Qin, D. Zhou, A.R. Krauss and D.M. Gruen, Appl. Phys. Lett, 72 (26), 3477 (1998) https://doi.org/10.1063/1.121658
  14. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska and I. Kiricsi, Appl. Catalysis, A 199, 245 (2000) https://doi.org/10.1016/S0926-860X(99)00561-X
  15. M. Endo, Chemtech, 18 (9), 568 (1988)
  16. P.M. Ajayan, in Carbon Nanotubes, ed T.W. Ebbessen (CRT, New York, USA, 1997) p.lll
  17. B. Gan, J. Ann, Q. Zhang, S.F. Yoon, Rusil, Q.F. Huang, M.B. Yu and W.Z. Li, Diamond and Related Materials, 9, 897 (2000) https://doi.org/10.1016/S0925-9635(99)00357-X
  18. P.G. Collins, A. Zettel, H. Bando, A. Thess and R.E. Smalley, Science, 278, 100 (1997) https://doi.org/10.1126/science.278.5335.100
  19. J. Chen, Y. Li, Y. Ma, Y. Qin and L. Chang, Carbon, 39, 1467 (2001) https://doi.org/10.1016/S0008-6223(00)00274-8
  20. W.Z. Li, J.G. Wen and Z.F. Ren, Appl. Phys. A 74, 397 (2002) https://doi.org/10.1007/s003390201284
  21. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M. P. Siegal and P.N. Provencio, Science, 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  22. S.Y. Hong, Y.S. Cho, G.S. Choi, D.J. Kim and H.J. kim, Korean J. Materials Reseirch, 11 (8), 697 (2001)