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When the contribution of lightweight components to the total energy of a system is small, the
inertia effects are sometimes ignored by replacing them to massless links. For example, a
revolute-spherical massless link generates two kinematic constraint equations between adjacent
bodies and allows four relative degrees of freedom. In this paper, to implement a massless link
systematically in a computer program using the velocity transformation technique, the velocity
transformation matrix of massless links is derived and numerically implemented. The velocity
transformation matrix for a revolute-spherical massless link and a revolute-universal massless
link are appeared as a 6 X4 matrix and a 6 X3 matrix, respectively. A massless link model in a
suspension composite joint transmitting external forces is also developed and the numerical
efficiency of the proposed model is compared to a conventional multibody model. For a massless
link transmitting external forces, forces acting on links are resolved and transmitted to the
attached points with a quasi-static assumption. Numerical examples are presented tc verify the
formulation.
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In a multi-body dynamic analysis, the equa-

1. Introduction

With the help of high performance of compu-
ters, multi-body dynamic analysis technique has
become one of the most effective tools in the
machine and automobile industries. Several com-
mercial programs such as DADS and ADAMS,
which are available in the computer-aided an-
alysis for multi-body systems, have been deve-
loped and widely used. (CADSI, 1995; M. D. I,
1994)
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tions of the motion are derived based on masses of
components, kinematic constraints, and force
elements such as springs, dampers and actuators.
Among the major components in a system, the
mass of one component may be comparatively
smaller than others. When a large force is applied
to the small mass component, the equations of
motion of the overall system may be ill-con-
ditioned and thus the numerical efficiency of the
computer simulation is seriously decreased. To
overcome this numerical inefficiency, many res-
earchers have used composite joirts to model a
small mass component. (Haug, 1939; Nikravesh,
1988) To improve the numerical efficiency in
vehicle dynamic analysis, Kading and Vander-
ploeg(1985) derived a solid axle suspension super-
element to apply to the front and rzar suspension



Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis 811

in a vehicle dynamic analysis. McCullough and
Haug (1986) derived the suspension of a track
vehicle from a composite joint and carried out the
dynamic analysis.

In these modeling techniques, small mass com-
ponents are replaced to massless links and equiv-
these
modeling techniques could not handle a massless

alent kinematic constraints. However,
link transmitting force elements, which often ap-
pear in the lower control arm of a McPherson or
a Double-Wishbone suspension.

In this paper, to implement a massless link
concept in a computer program using the velocity
transformation technique, the velocity transfor-
mation matrix of a massless link is derived and
numerically implemented. And a new modeling
technique for a massless link transmitting external
forces is suggested. The computer program Au-
toDyn7 (Kim et al, 1999) used in this paper
employs the velocity transformation technique
(Nikravesh, Gim, 1993; Kim, Vanderploeg, 1986;
Lee et al, 1993). The kinematic relation and
constraint equations of a massless link in Car-
tesian coordinates are well explained in refer-
ences. (Haug, 1989; Nikravesh, 1988) Although
the kinematic relation of a massless link can be
treated as constraint equations in the equation
of motion using velocity transformation tech-
nique, the derivation of velocity transformation
matrix of a massless link may be systematic and
much convenient. The efficiency of the proposed
method is confirmed through several simulations,
four-bar mechanism and the vehicle.

In section 2, the velocity transformation matrix
of massless links is derived and numerically
implemented in the AutoDyn7 program. In sec-
tion 3, the massless link with external force
elements is considered. Numerical examples are
suggested in section 4. The efficiency of the
proposed model is compared to a rigid body
model with mass effect. The conclusions of this
paper are presented in section 5.

2. Derivation of Velocity Trans-
formation Matrix of Massless Links

2.1 Equations of Motion Using Velocity
Transformation Techniques

The velocity transformation method is pro-
posed to obtain the generality of Cartesian
coordinates and the numerical efficiency in joint
coordinates. This method employs a graph theory
to analyze the topology of a system. As a result of
topology analysis, a tree structure and a path
matrix of the system are made to show the
connectivity of bodies from the base body to the
end body. The connectivity is defined from the
types of joints between the bodies. The velocity
transformation matrix of a system can be formed
by putting block matrix to proper position ac-
cording to the path matrix. This block matrix
imposes velocity contribution of each joint to the
velocity of each body. When the velocity trans-
formation matrix is formed, the equations of
motion can be converted from Cartesian coor-
dinate space to joint coordinate space. This
method confirms both the numerical efficiency
and the generality of equations of motion.

Let’s consider the constraint equations in joint
coordinates as followings:

?(q, t)=0 o))

where q is the vector of joint coordinates.
The time derivative of Eq. (1) is written as:

And the time derivative of Eq. (2) is written as:
D=7 (3)
77:[(¢q('1) @ +2@y:q+ D] (4)

where @y means the Jacobian matrix of the con-
straint equations. Using the velocity transfor-
mation matrix and Lagrange multiplier A, the
equations of motion are written as:

Md+ ¢q]7=§ (5)
where M=B"MB is the generalized mass matrix,
O,=@,B gives an easy calculation of Jacobian
matrix in joint coordinates, g=B"[g—MBq—
MB(';] is the generalized force vector. By com-
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bining Eq. (3) and Eq. (5), the equations of
motion are written in the matrix form as:

(00 % 1031-5] ®

@q 0 LA 7

2.2 Velocity Transformation Matrix of
RSML

Fig. 1 shows the configuration of a revolute-
spherical massless link. In Fig. 1, R and S repre-
sent the revolute joint definition point and the
spherical joint definition points, respectively. The
massless link is connected to the reference body ;
with a revolute joint and to the adjacent body 7
with a spherical joint. Figure 2 shows the coordi-
nate system of a revolute-spherical massless link.

Fig. 1 Configuration of a RSML

¢ ¢

S
Fig. 2 Coordinate system of a RSML

In Fig. 2, £7¢ coordinate system is coordinate
system fixed at the revolute joint o~ the reference
body ; and the ¢ axis represents :he rotational
axis of the revolute joint. The &7 {’ coordinate
system is a coordinate system rotated from the
&En coordinate about ¢ axis.

The vector d” connecting between point R. and
point S represents a massless link of length /,
which is defined at the £&'7'{’ coordinate system.
The position vector to the origin of the local
coordinate system of body 7 can be written as:

r;=r;+s;+d—s; (7N

where r; and r; are a vector from the inertial
reference frame to the origin of tke body i and
body 7, respectively. s; is a vector from the origin
of the body j to the revolute joint definition
point and s; is a vector from the origin of the
body ¢ to the spherical joint definition point.
The vector d is defined from the revolute joint
definition point (R) of body j to the spherical
joint definition point (S) of body 7, which may
not be perpendicular to the revolute joint axis.
These vectors are defined in the inertial reference
frame (XYZ).

Vector d” can be defined from tae initial joint
definition point of input data as follows:

do==A ;oA ;A,d” (8)

where do is the initial position vector from the
revolute joint definition point of body j to the
spherical joint definition point of body 7. The
matrix Ao is a coordinate transformation matrix
from the local coordinate system of body j :o the
global coordinate system at initial state. The
matrix A,; is a coordinate transformation raatrix
from the revolute joint coordinate system of body
J to the local coordinate system of body j at the
initial state, which is a constant matrix. The
matrix Ay, is a rotation matrix due to the revolute
joint rotation.

Considering the rotation of the revolute joint is
zero at the initial state, £,=0, the vector d” is
calculated from Eq. (8) as follow ngs:

d”"=(AAr) "do (9)

The vector d can be calculated from d” as
followings:
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d=AjArjA01d” (10)

The translational velocity vector at the origin
of the local coordinate system of body may be
written as:

Fi=F;+8§,+d—8;

(11)

where (') represents the time derivative. The
velocity vector d of RSML is calculated as:

d= (?)jd +AjArjA91d”
=@;d+A;AL00Asd”
=@,d+ Gid

(12)

where @; is the angular velocity vector of body
j. The skew-symmetric matrix @; is defined as
@;a=m;Xa. The vectors u; and u; represent
unit vectors along the revolute joint axes in
&'7’Y’ coordinate system and the inertial reference
frame (XYZ), respectively.

The terms §; and §; in Eq. (11) are also
calculated as:

(13)
(14)

The angular velocity of the body ; is written as:
(15)

where §; means the angular velocity of the
revolute joint. And 6, s, and 4, represent the
angular velocity of the spherical joint, respective-
ly. The vector u,, us, and u4 represent unit vectors
along the joint axes of the spherical joint, respec-
tively.

Inserting Eqs. (12~15) into Eq. (11) yields:

8;=®;8;
S:=®:8;=8;0;

@;= (0,-+ 91111‘*‘ 0.21124‘ (93]13+ 94114

f‘i:f‘j+ (7)]' (Sj+d_Si) + 91 (ﬁld‘l'éilll)

+§i(9zu2+ 93113"‘ 94114) (16)

Combining Eq. (15) and Eq. (16), the transla-
tional velocity vector and the angular velocity
vector of the body 7 are written in the matrix form

as:
-
0
e 1 I

2

where d;;=s;+d—s; and d.,=s;=d. Therefore,
the velocity transformation matrix of RSML is
written as:

d;;u; Su: Sius §iu4:l
u U U3 Uy Jex4)

Bi.i:l: (18)

The time derivative of Eq. (18) is written as:

Bij= [ Bu B: B Bu

N N o (19)
w1l Uz Uz (04ll4j](6><4)

where Bu, BIZ, Bl3, Bu are as followings:

Bu=d:-ui+d;ri, (20)
Blz=§ill2+§i(32uz (21)
Bis=8:us+35:@su; (22)
Bl4=§iu4+'s',~a34u4 ( )

2.3 Velocity Transformation Matrix of
RUML :
We also derived the velocity transformation
matrix for revolute-universal massless link via the
same transformation

sequence. The velocity

matrix and time derivatives of RUML are written

as:
dirwi §a1z S.us
B1j= (24)
mw Uz Uz Jexs
BB B B
w1 Wz @suzlexs

24 Joint Reaction Forces of massless links

Since the mass of a massless link is ignored,
joint reaction forces and torques can be calculated
by using the equilibrium equations as shown in
the Fig. 3.

D) T, =dxF, ®

Fig. 3 Joint reaction forces and moments acting on
R-S link
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3. Massless Link with External
Forces

3.1 Force distribution without bushing

When external forces are applied to a massless
link, the reaction forces due to the external forces
cannot be calculated from using a conventional
composite joint. Since the mass of a massless link
is small enough compared to masses of other
bodies, we assume a quasi-static state. In the
quasi-static state, the reaction forces due to a
force element can be divided into equivalent
forces at attachment points of the massless link.
The coordinate of RSML is shown in the Fig. 4
(a). In the Fig. 4(a), L represents the length of a
revolute-spherical massless link, ¢ represents the
distance from the revolute joint to the external
force acting point, and b indicates the distance
between the spherical joint and the external force
acting point. The R.J and S.J represent the
revolute joint and the spherical joint, respectively.
Fig. 5 (b) shows all external forces and reaction

RJ Z SJ
4 a b
y LY
(a) R-S massless link coordinate
Fy Rey
l Z Fz 1 RBz
> ¢ >
X
Y
(b) Force components on y-z plane
X
R z f Fz Re:

>
A
RA! Fx RB:

(c) Force components on x-z plane
Taz Tz Toz
—ad —P- >

(d) Moments along z-axis

Fig. 4 Forces and moments acting on R-S link

forces on y-z plane and forces on x-z plare are
shown in the Fig. 5(c). Fig. 5 'd) shows the
moments along z-axis.

When external forces are appliec to a re-
volute-spherical massless link, three directional
forces and two directional moments are “ound
as reaction forces at the revolute joint. Three
directional reaction forces are found at the sphe-
rical joint. Resultant forces can be divided into
the bending direction and the axizl direction. In
the Fig. 5(a),
external force and external torque,

Fv and T represeat the vertical
respectively.
Fa and Fg represent the bending direction reac-
tion force at the revolute joint and the spherical
joint, respectively. In the Fig. 5(b), Fy represents
the axial direction external force. Ry and Rg
represent the axial direction reaction force at the
revolute joint and the spherical joint, respectively.

The resultant forces on x-z plane are calculated

as follows:

_[&(3L—a) 3a(2L—a)

F"_[ 203 I]F”+ e L @9
_d(a—3L) 3ala—2L)

Fy= N Fu+ N T (27)
_[d*(BL—a) 3a(2L—a) .,
RA=%Fh, RBz%Fh (29)

The resultant forces on y-z plane can be
calculated using the same manner as the above.
And also, the moments along z-axis can be
calculated in the same form as the Eq. (29).

——

(a) Bending direction

le— a b J
| 'E: Fh N
—<=

Ra Ra

(b) Axial direction

Fig. 5 R-S link reaction force calculation
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_b —a
Tor= T Tz, Tor= T T (30)

3.2 Force distribution with bushing

In most vehicle suspension systems, bushing
elements are used to improve the ride quality and
steering performance. Regulations for bushing
elements must be considered in modeling the
vehicle suspension system. The joint model, the
linear bushing model, and the non-linear bushing
model are used to describe the influence of rubber
bush compliance on vehicle suspension movement
(M. V. Blundell, 1998). The results showed that
the bushing element should be included for an
accurate modeling of the vehicle systems.

If a bushing element is contained in a lower
control arm, it works as a compliant element
admitting deformation and damping. Since this
bushing element connects adjacent bodies via
forces due to bushing deformations, the modeling
technique involving the bushing element is quite
different from the purely kinematic element.

Fig. 6 shows an example using the bushing-
bushing-spherical link with external forces in the
vehicle suspension system. ‘

Let us put the deformations of the point B; as
=[x, y1, z)7 and the deformations of the
point Bz as #2= [ x5, y», 22) 7. The potential energy
of the lower control arm in the Fig. 5 may be
written as follows:

V() =%@’K@1+%@TK2@ (31)

where u is [217, #"]". And K, and K; are the
stiffness matrix of the bushing installed at the

> 4

M

tire

L
<&
@

lower control arm J
\v

Fig. 6 R-S link with bushing and external force

point B; and B,, respectively.

Even though the bushing is deformed, the
length of the lower control arm must remain
constant. Thus, the constraints of the bushing-
bushing-spherical massless link can be written as
follows:

@1=m" 4=0 (32)
@,=B:S— =0 (33)
Os=B1B,— =0 (34>

The minimizing the potential energy theory is
applied to calculate bushing deformations as:

Min V(%)

subject to @;(z), j=1, 2, 3 (35)
Then, the overall equation can be reorganized
as:

f=min[ Vi) +g/zj(bj(g)} (36)

where J; is the Lagrange multiplier.

Reaction forces at point P can be distributed to
equivalent forces and moments at two ends of line
O-S, which is a perpendicular line from S to the
line B;-B; in Fig. 5. The equivalent forces and
moments at point O and point S can be computed
by using the elementary beam theory with appro-
priate boundary conditions. After computing the
reaction forces and moments at point O, those are
distributed to forces and moments at the two
points B), B,. Forces and moments along the line
B,-B; can also be calculated by using the beam
theory with proper boundary conditions. Detailed
process was described at reference (Sohn et al,
2001).

4. Numerical Examples

4.1 Four-bar Mechanism

To confirm the new formulation, such as the
velocity transformation matrix of the revolute
-spherical massless link and the revolute-univer-
sal massless link with external forces, we modeled
the four-bar mechanism in two different ways.
The first model is the conventional four-bar and
the second one has the massless link. Fig. 7 shows
the conventional four-bar model. All bodies are
assumed rigid bodies. Spherical joint is treated as
a cut joint of closed loop system.
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S x Cut

() ground
@ crank
@ coupler

(@ foliower

Fig. 7 Conventional four-bar model

S Cut
6]

RUML

() ground

@ @ coupler

(® follower
0 R

Fig. 8 Four-bar model with a RUML

The velocity transformation matrix in this case
is written as;

[E I
[B]= 0 [ﬁ:ﬂ 0 (37)
o [[Y )

Fig. 8 shows the four-bar model with RUML.
The crank is a revolute-universal massless link
and spherical joint is a cut joint.

The velocity transformation matrix in this case
is written as;

[dirUl Sauz S iU3:|
1°31 Uz U3

0 [lL;dl}
Uy 12x4

Table 1 represents the comparison of two dif-
ferent cases.

0

(B]= (38)

Fig. 9 and Fig. 10 show the planar motion of
the coupler and angular velocity of the coupler,
respectively.

Table 1 Comparison of two o her models

Rigid body RUML
Coordinates 4 4
Constraints 3 3
[B] Size 18 X4 12X4
CPU times 5.63 5.17
0.8+

T 061
S
& 04+
8
o
3 0,24 - Rigid Body
T N/ |- RUNL
>
0.0
02 0o o2 04 08 08 10 12
Horizontal Position [m]
Fig. 9 Planar motion of the coupler
12
o] ——Rigid body
'a i
H
g
E
g —
S
®
>
o
=
=)
D
4
< 4
-12 T Y T Y T v
0 1 2 3 4 5

Time [sec]

Fig. 10 Angular velocity of the coupler

Results of RUML model show good agree-
ments with the rigid body model. The proposed
model using the RUML the better
efficiency than the rigid body model.

shows

4.2 Vehicle Simulation

4.2.1 Vehicle Modeling
To confirm the new approachk, a numerical
simulation with a full vehicle model is performed.
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Table 2 Properties of the vehicle system

1046kg
Double-Wish bone type

Body frame

Front suspension

Rear suspension Solid axle with leaf spring

Tire Full tire model

Steering system Rack and pinion type

Total body number | 15

Degree of freedom 15

Wheel

B : bushing element

R : revolute joint

S @ spherical joint
UCA : upper contro! arm
L.CA : lower control arm

Fig. 11 Front suspension (Double-Wishbone sus-
pension)

The front suspension of the vehicle shown in the
Fig. 11 is a Double-Wishbone type. And a solid
axle suspension with a leaf spring is installed in
the rear wheels. The tire model used in simulation
calculates the longitudinal, lateral, and vertical
direction forces and moments. The steering system
is a rack and pinion type. In the Fig. 12 and Fig.
13, rigid means a rigid body model and RSML
represents massless link model. All the models
contain a translational spring-damper on the
lower control arm. The properties of the vehicle
system are listed in Table 2.

4.2.1 Steering Simulation

When the vehicle is moving with a speed of
80km/hr, a half sine steering input is applied at
the rackbar during 0. 3 second. Fig. 12 and Fig.
13 show yaw rate and lateral acceleration of the
chassis frame, respectively. Two responses with-

Table 3 Comparison of CPU times in pulse steer
simulation (SGI R10000 Octane workstation)

Rigid RSML Rigid RSML
Case w/o w/o w/ w/
bushing | bushing | bushing | bushing
Time
4.4 4.3 251.3 10.
[Seconds] 0.7
03
—— Rigid without bushing
- RSML without bushing
——»— Rigid with bushing
. 024 | ——a—RSML with bushing ﬂ
E
2
B o014
g
i
00
v Y T T T T v T
0 1 2 3 8§

Time [sec}

Fig. 12 Yaw rate of chassis frame

~—— Rigid without bushing
N RSML without bushing
—s— Rigid with bushing
%«T —-4— RSML with bushing
o
B
2
g 11
o
f
LI
-1 T T T t T T T
0 1 2 3 4 5

Tirme {sec]

Fig. 13 Lateral acceleration of chassis frame

out bushing are almost identical. Two results with
bushing are somewhat different from results
without bushing due to bushing deformation.
Table 3 shows the computational times of the
four different models at the SGI workstation with
R10000 chip. As shown in table 3, when there is
no bushing, difference is not big between the rigid
body model and a massless link model. However,
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in case bushing is considered, computational
times are quite different. RSML modeling tech-
nique including bushing elements is much more
efficient than the conventional model.

5. Conclusions

In this paper, the velocity transformation
matrix of massless links such as a revolute~
spherical massless link and a revolute-universal
massless link, which are useful in vehicle dyna-
mics and modeling of a multibody system are
formulated. In case generating the equations of
motions by using the velocity transformation
techniques, massless links can be modeled as
the joints rather than the constraint equations
through the new approach. Conventional mo-
deling techniques such as a constraint model
didnot handle a massless link transmitting force
elements, which often appear in the lower control
arm of McPherson or Double-Wishbone suspen-
sion. However, external forces applied on these
massless links are resolved and transmitted to the
neighboring bodies theoretically in this paper.
The four-bar mechanism and the full vehicle
system are tested to confirm the formulations of
massless links. When the mass of a body is small
and can be neglected, responses of a RSML model
and RUML model are in a good agreement with
a rigid body model.

When a bushing element is attached to a mass-
less link model, a quasi-static formulation of
bushing deformation enhances the numerical
efficiency.
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