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Dynamic Analysis of Harmonically Excited Non-Linear
System Using Multiple Scales Method

Byung-Young Moon*, Beom-Soo Kang
Department of Aerospace Engineering, Busan National University,
Gumjung-ku, Busan 609-735, Korea

An analytical method is presented for evaluation of the steady state periodic behavior of

nonlinear systems. This method is based on the substructure synthesis formulation and a MS

(multiple scales) procedure, which is applied to the analysis of nonlinear responses. The

proposed procedure reduces the size of large degrees—of-freedom problem in solving nonlinear

equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear

rotating machine system as an example of large mechanical structure systems. In addition, its
efficiency for nonlinear response prediction will be shown by comparison of other conventional

methods.
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1. Introduction

In recent years, industrial machines used for
the gas turbine for propulsion of an aircraft,
power plant turbine etc. trend toward high-speed
and lightweightdur, which may cause the trouble
of nonlinear vibration. Vibration analysis of such
rotor systems is performed usually by the FEM
(Finite Element Method)
When large amplitude vibration occurs, however,

with linear model.

nonlinear characteristics of the rotor systems with
complexity can not be represented simply with
linear spring and docmping coefficients. There-
fore, it is necessary to investigate the nonlinear
characteristics in vibration analysis and design of
rotor systems. On the other hand, a high-speed
rotor system used for the gas turbine for pro-
pulsion of an aircraft, power plant turbine etc.
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promptly pass a critical speed. Accordingly, the
casing is often modeled elastically to decrease
the critical speed. Vibration induced in the rotor-
bearing-casing system may make the casing con-
tact the rotor and then give rise to damages of
the bearing possibly. Therefore, the investigation
of the response of a rotating machine is very
important for stable operation. To construct real
mathematical model in vibration analysis, dy-
namic characteristics of rotor, bearing and casing
should be investigated.

For efficient Vibration analysis of a mechanical
system with a large number of DOF’s, the SSM
(Substructure synthesis method) has been stu-
died. Iwatsubo et al. (1998) and Moon et al.
(1999; 2001) presented analytical methods to
analyze the vibration of a nonlinear rotor-bear-
ing-casing system by employing the perturbation
method. They considered the nonlinearity in the
shaft and bearing part and considered the effect
of nonlinear sensitivity in the subsystem. Moon
et al. (2001) proposed an approximate analytical
method to analyze the dynamic problems of a
nonlinear structure system using the SSM and a
harmonic balance method.
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However, a nonlinear vibration problem needs
more accurate analysis in some rotor systems,
which are used in jet engine of an aircraft or some
power plant turbines. The high-speed and light-
weight mechanical systems lead to more complex
nonlinear vibration. In the analysis of nonlinear
system, there have been a lot of research works
using the method of MS for the single DOF of
nonlinear vibration system, and its application
to the multi DOF system have been reported
(Haquang et al., 1987; 1978) . However, the study,
which applied the on the MS method which is
applied to the nonlinear vibration analysis of
rotor system, has not been reported yet.

Therefore, this paper presents an analytical
technique based on the MS theory and the mode
superposition principle for the dynamic analysis
of nonlinear mechanical systems. Furthermore,
the proposed method enhanced the previous stu-
dies (Iwatsubo, et al.,, 1998; Moon, et al., 1999;
2001) such that it can be applied to more accurate
analysis comparing with the perturbation method
of the previous studies. The proposed method is
then applied to a nonlinear mechanical system in
order to illustrate the performance of the method
in respect of the computational accuracy by
comparing the results obtained from the other
conventional methods.

2. Method of Analysis

A structural system consists of a set of inter-
connected components that have segments with
distributed mass elasticity and nonlinear parts.
The first stage in analysis process, therefore, is to
sub-structure the original nonlinear system into
some components that can be modeled separately
with linear and nonlinear sets. Small substruc-
tures may be easier to model and will eventually
result in an economical analysis procedure.

When a complex large system is modeled with
the SSM, the internal force is considered because
each component can be synthesized through the
internal force with the other components as
shown in Fig. 1. In this case the internal forces
act on the component 1 (1b) and component
2(2b) in the opposite direction with the same
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Fig. 2 Rotor-bearing-casing system

magnitude. Those internal forces will disappear
by synthesizing each component into the overall
system. In this study the external “orce(1a), whica
acts on the rotor, is unbalance force.

2.1 Modeling of the nonlinear system

In this paper, we consider a rotor-bearing
~casing system as shown in Fig. 2. The rotor is
supported by bearings that are fixed on the casing.
The casing and the foundation are elastically
connected. The rotor has material nonlinearity.
For dynamic analysis of this kind of complex
system, the SSM can be applied.

The coordinates system of the rotor-bearing-
casing system is defined as shown in Fig. 2. The
0-xyz coordinate is fixed in the reference frame,
where the x-axis is perpendicular to directions of
shaft and casing, the y-axis vertically upwards,
and the z-axis along the shaft and the casing. The
shaft and casing components are modeled by
using the FEM. The rotor system is assumed to be
excited by the unbalance force. "hen assumption
of a steady state response is reasonable. The
excitation forces by the eccentr'c mass m; at a
distance e; from the rotor georaetric center are
given by
Fx}__{MieiQZCCS(Qt+¢i> }
E) UmeQ%sin(Qt+4) ) (1)

(=1,2,3, )

(R0, )=
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where ¢ and Q are the phase quantity and the
rotating frequency, respectively. The excitation
force by the eccentric mass of the rotor can be
treated as a harmonic excitation. In general, the
response shows well the nonlinear characteristics
near natural frequencies of in the nonlinear sys-
tem, as observed in the single DOF system. Espe
-ially in the rotor system, the dynamic behavior
around the critical speed is very important where
most of the troubles occur. Therefore, it needs to
pass the critical speed quickly without troubles.
Because of these reasons, the exciting frequency
around the first natural frequency of the system
should taken into account.

2.2 Modeling of nonlinear component

When the rotor is modeled by the FEM, the
nonlinear characteristic of the restoring force is
regarded as nonlinear-displacement-dependent-
stiffness. By considering the boundary conditions,
the equation of motion for the nonlinear compo-
nent can be written as (Moon et al., 1999; 2001)

CM1{ )+ PR b+ e[ Kad( o)
={'Fu(Q, H}+{'F.}

where ['M], ['K] and [Ky]{'#%®} are the mass,
stiffness matrices and nonlinear term, respectively.
{'F.(¢)}, {*Fy} are an external unbalance force
vector by the rotor and an internal force vector,
respectively. € is a
superscript denotes the nonlinear component. The
displacement vector can be written as

2)

small parameter. The

n) (3)

where x:, Ox:, y; and 6, are the displacements and
rotations in the x-direction and y-direction at
the z-th nodal point, and # the number of nodes.
Exactly to say, vibration modes of a nonlinear

{lu }Z{xi, Ori, Vi, 6yz‘}T, (izl, 2, -

system are slightly different from those of a linear
system. But for simplicity of analysis, they are
assumed to keep those of a linear one. Accord-
ingly, the modal coordinate system can be
obtained using the modal matrix [*@]. Then, the
Eq. (2) can be transformed into the modal coor-
dinate {1£ } system as follows:

{tu}=l0]{ ¢}, (4)

{6+ Va6 ) +e[' @) [ K] { ')
=e{fu(Q, O}+{fs}

where, {'/u}(=['@1"{'F.(t)}), {fu(t)}(=
['@]7{'F»}) are the external and internal forces
in modal coordinates, respectively. Since ['@]7
[Kv1{*%*} is not a diagonal matrix, this term is
changed into modal coordinates in accordance
with the reasonable procedure (Moon et al., 1999;
2001). Then, a nonlinear term can be derived as
E[\k&\]{ &° }

Here, the perturbation method is introduced to
solve the nonlinear equation in Eq. (5). The
variant &[“km] can be regarded as the pe-
rturbation parameter term, because it is relatively
smaller than [Mw ). Thus {*€ } can be expanded
in terms of & follows;

{15}={15(o>}+6{ 1eMYy 4 2{1e@) ... (6)

(5)

where the superscript ( - ) denotes the perturba-
tion order. By substituting Eq. (6) into Eq. (5),
and arranging by ¢, the perturbed equations can
be written as

(E0)+ [ 1 60)={ £,0),
(80} + [0 2]{e)
=CLIHFnCEN)+0A), )
(E0)+ [0 7] 6)

=(1f (0% 1)) {1 (£0)) +{ £,2)

where {1/}, {1/,®} and {£,®} are perturbed
internal forces. {'fp1} and {'fp2} include the
nonlinear stiffness term, {1/, (1€9)}=—[V%,]
(1603), {1£, €7, 60))={ —3[Wk J{ 160"
&MY}, respectively. Here {'€®2.1£M} is a pe-
rturbed modal displacement term which comes
from the perturbation zero-th order and pe-
rturbation first order.

2.3 Modeling of linear, assembling
components and overall system
The casing is modeled as a linear substructure.
With the eigenvalue analysis, the equation of
motion in the modal coordinates can be obtained
as follows;

[RI{2E )+ [Pl t=el £} +{f) (®)
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where [Yw ] and [‘/\] are eigenvalue of linear
substructure and identity matrix, respectively, and
[fc] the external force vector. Even though the
casing component is linear system, this compo-
nent is perturbed the same as the nonlinear com-
ponent, because the higher order harmonic
oscillation which occurrs in the nonlinear com-
ponent is translated through the higher order

perturbed equation in Eq. (9)

(2E9)+ %0 71{*")=—{*£,°),
(€04 U0 {26 =~{ )= (A}, (9)
{62+ [0 71767} = —{(*/,)

where {2/}, {%/,"} and {%/+®} are the pe-
rturbed internal forces.

Ball bearings are considered. As an assembling
component, Damping in the bearing, is ignored in
this study for the simplicity of bearing model in
order to verify the effect of nonlinear restoring
force. The restoring force of the bearing is
modeled as

Choil{ s }={"1s }, (Phe{?xs }=—{%f, } (10)

where [“ks;] (j=1, 2)
{*/s}, {*fs]} the internal force vectors of the
nonlinear component and linear component, re-

are bearing coefficient,

spectively, and {7x, } the relative displacements
between the rotor and casing corresponding to the
bearings. In order to solve the overall equation,
the small parameter is set equal to the pe-
rturbation parameter of the nonlinear component.
The internal force vectors can be perturbed as

{6} = e {0+ {12} (11)
(%6 1=+ & - {20} + & - {2/:®}

In order to synthesize the components, Egs.

(7), (9) and (12) are combined and rewritten
according to the equation of order & (p=0, 1, 2)

[EP}L[RP){ g®)={ F®(Q, ¢, €O, M} (13)

where [ K] is the stiffness matrix of the overall
system

{Ero) {{ 1510) 1xb(o;}1’ {sz o>}r’ {250} }

{F(O) :{{ lfb(O)}T, {2fb(0)}T, {0 }

{ {{15(1 r, 1 (1}1,{2x(} {251}1}
{FO={UAIT (M )T A =490, (BAO), {£0)7),
{ r’ 1 (1) ’{z (1)} {251)}}
AN, (0}, {0)7)

£9)={{1e"
{FO={{ )", { -0

In order to apply the SSM, we introduce the
transformation matrix, which is composed of
[#s:] (=1, 2), and the eigenvector matrix of the
assembling region. (Moon, et al., 1999, 2001) By
substituting the transformation matrix into Eq.
(13) and pre-multiplying, the overall equation of

(%)

order &’ can be expressed as

e B e

(L=t

(14)

[lll] = [¢le T[lkbl] [¢b1]7 [dz]
[aa] = [¢b2] T[lkbz] [¢b1}, [04]

=[¢bl]T ks ][

[ 1] [Bee],
= [¢bz] T[zkbz] [¢b2 .

]

The external force with order ¢* is obtained as

oo (L) {0}
U=l e tor )

=[] U A 1 i
R RS S MRS

9 [¢a1] {1P2}1+[¢b1]1'{1fb(2)}
B oyt )

By applying the modal analysis technique

{5} (0:{7n}, Eq.

[ @] is the modal matrix of the overall structure.

(14} can be solved, where

{7+ DN\ { 2%}={0)
{7 DN\ )=~ [Q1{ 7} + { } [PH7™; (15)
(7914 DN 7)== Q) 3%)=3[P]{ 7% 50

where  [Q]=[@][\C\][@:]", {G}=[0.]
{/u} and [P1=[02][Vm][@z]. [\e}\] is the
eigenvalue of the overall system. Here { 7®? -
7"} is a perturbed modal displacement term
which comes from the perturbation zero—th order
and perturbation first order.
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In this study, the damping term is considered in
the overall system as a proportional damping of
('C\l=ell1+p[Mwd] where a,8 are the
damping coefficients.

3. Response Analysis by
Applying the MS Method

To obtain the equation to perturbation first
order by MS method, time scale is introduced as

follows;
Tnzent,
4 _dlh 0 . dT 9 dL: 3 .
dt  dt Ty dt 9T ' dt oD (16)
=Dy+eDy, +&Ds+--,
2
5,;2 =D02+2€D0D1+€2(D12+20002) +

By substituting Eq. (16)) into Eq. (15), and by
arranging it with ¢, the equations can be rewritten

By 7)=(0)
DA+ TN\ )= DD )21 Q100 1
[P} ™) 6) -
BP0\ )=~ DD 1)~ (D¢ 420,09 1

[ Q1D 1) -20Q1 Do 1}
[P]( 702 y0)

The exciting frequency is regarded as a value

near to the first natural frequency w:. By noting

the detuning parameter o, the exciting frequency
can be expressed as

Q= +¢e0 (18)

Here, only the main resonance is considered by
assuming that there is no other resonance except
the main resonance.

The solution of the first equation Eq. (17) can
be expressed as

{99} ={ Alexp(imn To) +{ A Jexp(~ime T5)  (19)

According to the MS theory, by substituting
Eq. (18), and Eq. (19) into Eq. (17), the equa-
tion can be expressed in the single DOF form for
the first mode. The secular term is eliminated
from the particular solution. In a similar way, a
condition to eliminate the secular term of other
components of equation for m=2, 3, ~2# can be

applied. When the vibration steady state, by
dividing the equation into real part and imagina-
ry part and then squaring each equation, the
equation can be written as

(Q11a1)2+(6a1— 82)1 Pua?>2= 412

2n=0 (m=2, 3, ~2n)

The frequency response of the system to the
perturbation first order is obtained by solving
Eq. (20). Next, a formulation procedure to obtain
the equation to perturbation second order is
introduced. According to the second equation of

Eqg. (17), the particular solution for the single
DOF is obtained by eliminate the secular term.,

1 & 7 - .
)zm( 2 Z}zkalkAk-i-}gszAiAk)eXp(w)uTo)

(20)

(1)

n
mkz_lpw‘liew GionTo) +ec
(3 14=

Similarly the particular solution of equation for
m=2~2n is obtained by eliminate the secular
term as

{1y __
=

{25000+ 33 Puti Aol T

1 ] .
'I-WIZEIPW@exp(kaR)
R Wm #=

+;wz)GmeXP(ioTl) exp(ion To) +cc (h+m)
1,

ek~
(22)
By substituting Eq. (19) and Eq. (22) into the
third equation of Eq. (17), the equation can be
solved. However, it is quite complex to solve all
equations for m=2, 3, ~2# component equation.
Thus, the equation is arranged according to the
condition to eliminate the secular term (the terms
of iwnTy) as follows:

—2z'w,,,DzAm+Q,§mAm+wiszPmAMm
; ) " (23)
+t——Pan ArAit cc=0
4CUm

When the vibration is steady state, by con-
sidering BEq. (23), the developed equation can be
obtained. Then, the arranged equation can be
rewritten in terms of the real part and the imagi-
nary part.

In accordance with formulation to the pe-
rturbation first order, this result corresponds to
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the 7, 73, —~ 72,=0 relation when the nonlinear
restoring force is into modal
coordinates. The particular solution of the single
DOF 5 of Eq. (21) becomes

transformed

771“)2 8;2 P11A13€Xp <3l(l)l ]?J) +cc <24)
1

By substituting Eq. (19), and Eq. (24) into the
third equation in Eq. (17), the equation can be
arranged in a simple form. Using secular term
(the terms of iwi Tp), the single DOF equation
can be obtained as follow:

—ZiwlDzAl + QflAl +[%iP11Q11A%A1 +4LQ)ZP121 A?A_%
1
+%(i@ll—wi1PuAlA1—o‘)exp(i0ﬂ) (25)

+8iwzalclAfexp<—wT1> +ee=0
1

where A; =%a1 exp (#41). By substituting A4, into

Eg. (25), the equation can be rewritten in terms
of the real part and the imaginary part. When
the vibration is steady state and the relation of

(cz’;;l: D1A+€ZDZA:O) is considered, the

equation becomes
Ac cos 7+ Bcsin y=Ce, D cos y+Ecsiny=Fc  (26)

_(1 eo 3eh )
AC“(Z 4o 320)?0% G

B:;= ‘f]—wau, De=-B

3 9e
where Cc=a1< —‘E'lel - (016+‘8—Pulﬁ_—128w§ P lll4>
_{1_es 9Py
EC‘( 1 4o R4t ‘ﬁ>61’

3
Fc:lendl—%wilQnHﬂ?

By eliminating the term y from the Eq. (26),
the polynomial equation of g? is obtained as
follows;

7
,Z;)Cn(e, o, wy, P, Qu, Gl) a?*==0 (27)

The frequency response of the system to the
perturbation second order is obtained by solving
Eq. (27). From the Eq. (27), the solution of the
equation of motion to the first order of ¢ is

obtained. The response for the sin 3le DOF can be
expressed as

771=a1cos($2t—y)+e{?21—w;Pua?cos(3Qt—37)' (28)
2 )

where 7y is obtained from the Eq. (26). The time
response of the equation of riotion can be
obtained by changing Eq. (28) into paysical
coordinates.

4. Numerical Examples

Here, the response analysis is presented to
demonstrate the application of the proposed
method. The responses of the proposed method
are compared with those obtained by the classical
analysis technique for accuracy validation.

A nonlinear rotor system, which is shown in
Fig. 3, is considered. The rotor and the casing
are considered to be a uniform beam appro-
ximately for the simplicity of calculation. The
cross-coupling terms in the bearing are ignored
for the simplicity to verify the effect of non-
linearity. The properties of the rotor system are
tabulated in Table 1.

Table 1 Properties of the rotor system

Rotor, Casing length (mm} | L6X10°
Rotor diameter (mm) | 3.0x10?
Casing diameter (mm) 1.0X 107

Young’s modul.es of rotor (N/m?) 2 (¢ 104
and casing

Density of. rotor and (Kg/m?) | 7.81%10¢

casing
Bearing coefficient (N/m) | 6.69x10*
Constrain coefficient (N/rc) 1.0x 16"

Excitation fore

Nodet
LT T 1

Node3
- == Asserubly Region

CT T T T T TT - swstum

Node] E Nods3
Z Wé/iz

Fig. 3 Model for Analysis

[ 1 1 --- Substructure i
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The rotor and the casing are modeled with
the eight beam elements. The modal damping
ratios of the rotor system are @, 8=0.05. The
external unbalance force with as value of 50 is
acted on the 5th nodal point of substructure 1.
The perturbation parameter for the nonlinearity
is adopted as a small value (that is, 0<e<0.6).
If the bigger value for €>0.6 is adopted, the
solution will be deviate from the exact one. This
is one of the limitation of the multiple scales
method.

Figure 4 shows the frequency responses which
are calculated by perturbation first order approx-
imation at the nodal point 5 of substructure 1
when adopting 5 modes and total modes (18
modes).

Figure 5 shows the frequency responses which
are calculated by perturbation second order ap-

Amplitudejm]
=4
o
~
T

0.01

Response in case of |
adopting total mode
-

: aa Responsein case of
adopting 5 modes
o T 1

1 L5

Qo

Fig. 4 Frequency response by using first order ap-
proximation

;E_ \ T T
3
g
g o002} -
«
0.01 - Respouse in case of |
A ® ® adopting total mode
A a Respouse in case of
. uﬁng T
0 1

1 L5
Q/wy

Fig. 5 Frequency response by using second order
approximation

proximation at the nodal point 5 of substructure
1 when adopting 5 modes and total modes (18
modes) .

It can be observed that the presented method
show relatively accurate frequency responses by
adopting 5 modes compared with responses of
adopting all modes. From this result, it is believed
that the nonlinear restoring force term can be
easily transformed into modal coordinates while
retaining its accuracy with its lower modes ac-
cording to the proposed procedure. To evaluate
the proposed technique, the responses need to be
compared with the other representative nonlinear
analyzing method, such as direct integration
method. Using the FEM, the equation of motion
of rotor system, which is composed of rotor-
bearing-casing, is obtained. Numerical integra-
tion is carried out conveniently in terms of first
order equation. Thus, the nonlinear equation is
recast in the state form. Then, the fourth order
Runge-kutta method is used to obtain the re-
sponse for unbalance excitation.

Figures 6 and 7 show the frequency responses,
determined by using the MS method with the first
order and the second order. Those responses are
obtained at the nodal point 5 of substructure 1.
Five modes are adopted in each response.

As shown in the reference (Hassan, 1994),

]

“Incorrect solutions,” which do not exist in the
direct numerical integration response, appears
to be the solution when using the MS method
with approximating to the second order. Though
“Incorrect solutions” appear in the large amp-

litude area around 0.03 or more of the frequency

Amplitude{m}
2
=)
©
T

+ns Amplitude by presented method
in caseof adopting 5 modes

. A Amplitude by numerical integration,
4 Mﬁ— -

1 15

Q/a,

Fig. 6 Comparison of Frequency response by using
first order approximation
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ooy v« Amplitude by presented method
in casc of adopting 5 modes
0 b 1 fonity
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1.5

Qlw,

Fig. 7 Comparison of Frequency response by using
second order approximation

response curve of Figs. 5 and 7, they are neglected
because it is unrelated in substance with this study
$0 it is not shown on the graph. It can be observed
that the results of each method showed well the
nonlinear characteristic in comparatively good
agreement with the those of direct integration, as
shown in Figs. 6 and 7. Especially, there is a good
agreement with keeping the accuracy of the re-
sponse between the proposed method of the pe-
rturbation second order and integration method
as shown in Fig. 7.

As a result, the proposed method can be
employed for the frequency response with rela-
tively compact formulation of the complex system
with the almost same degree of accuracy with the
direct numerical integration. In this study, the
steady state response is analyzed but the stability
distinction is not carried out.

Figures 8 and 9 show the system response in the
time domain response results using the MS meth-
od adopting 5 modes in accordance with Eq. (40)
and the direct integration method at node 1 and
node 35 of substructure 1. Figure 8 compares two
time domain responses when the system is excited
by an external force with exciting frequency of
138rad/s where the first natural frequency of the
system is 141rad/sec.

Figure 9 compares two time domain responses
when the structure is excited by external force
with exciting frequency 157rad/s, which is a little
larger than the first natural frequency of the
system. Compared with the amplitude of the re-
sponse by direct integration method, it can be
observed at the selected point that comparatively

Displacement{m]

35

Time[see]

(a) Displacement at Node | in substructure 1

.

=1
S

&
g

Displacement{m]
<

=]

he
)
[
[

34 .5
Timelsec]

(b) Displacement at Node 5 in substructure 1

Presented method,

------------ Integration method

Fig. 8 Comparison of time history.
(Q =138rad/sec)
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3 L 4

s 0 1

&
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(a) Displacement at Node 1 in substructure 1

£ o ' ' ' ]

=

g 0. 4

g J

& 00t}

S ¥ 33 ' 37 T3S
Time(sec]

(b) Displacement at Node 5 in sabs:ructure 1
Presented method,
----------- Integration method

Fig. 9 Comparison of time history.
(Q =157rad/sec)

accurate nonlinear responses of the system are
illustrated with the corresponding phase. Never-
theless, there is a little difference of responses at
node 1 of substructure 1, as showr in Figs. 8 and
9. By careful examination of the responses both at
nodal point 1 and nodal point 5 in Figs. 8 and 9,
it is reveals that the nonlinear displacement
becomes small though it is excited near the first
natural frequency. This can be vnderstood that
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the amplitude of the frequency response grows
up even if the exciting frequency exceeds the
first natural frequency because of the effect of
nonlinearity, as observed in Figs. 6 and 7.

Figure 10 shows the corresponding FFT (Fast
Fourier Transform) analysis results of time
domain response at node | and node 5 of sub-
structure 1, which are calculated by the direct
numerical integration and the MS method. Each
time responses are obtained by the same simula-
tion condition with Fig. 9. The power spectrum is
expressed in a logarithm to confirm the nonlinear
frequency element easily in the diagram. Both
results in Fig. 10, are comparatively in a good
agreement.

The nonlinear frequency element (3Q) is ob-
served in each spectrum. Nevertheless, it is ob-
served that the spectrum of nonlinear frequency
element (3Q) of the proposed method is smaller
than the spectrum obtained by the direct numeri-
cal integration method at node 1 of substructure
1. It is assumed that the response of MS method is
approximated response. Accordingly, there might
be an increase in deviation from the exact solu-
tion. There is no higher nonlinear frequency ele-
ment (5Q) in the presented method while the
result of the integration method shows one.
Because the proposed method approximated the

10 " T ]
210° .
2o P
= %86 A ]

i i

Y . )
0 50 1 150
Frequency[Hz}
(a) Node | in substructure 1
=z :
= . |
= : 1
@ :u\ E
(o] ', '| ]
L ..(I ‘\'u- ¥
100 150
Frequency[Hz]

(b) Node 5 in substructure 1
Presented method,
------------ Integration method

Fig. 10 Comparison of frequency spectra

solution to the frequency (3Q) element, there is
no frequency element (5Q). Next, the calculation
time is considered to verify the effectiveness of the
proposed method. For example, the calculation
time for the responses in Fig. 9 is examined. The
proposed method takes 2 minutes 45 seconds to
calculate the time response until the 3.5 second
time interval, while the direct integration method
takes 18 minutes 35 seconds to compute the same
time interval by using the personal computer &
Logix IBM Co.. As a result, it can be observed in
this study that a drastic reduction in com-
putational time can be achieved with retaining the
accuracy. This is a critical factor in the analysis of
the structural dynamics with a large number of
DOF systems.

5. Conclusions

In this paper, the vibration analysis of a
nonlinear mechanical system has been formulated
theoretically by employing the MS method. The
formulation is concerned with reducing the num-
ber of DOF for each substructure by modal sub-
stitution in accordance with the MS theory. All
the substructures are then re-assembled together
and the nonlinear response of the overall system
is obtained for the harmonic excitation. This
method was applied to a nonlinear rotor system.
The performance of the proposed method was
compared with the direct integral method in terms
of the computational accuracy and time. It has
been shown that the nonlinear responses can be
efficiently calculated with the selected number of
vibration modes. And the nonlinear characteristic
of the nonlinear restoring force is well simulated.
As a result, the proposed method was proved to
be an applicable technique for analyzing the
dynamics of the nonlinear structures. Moreover, it
is believed that those properties of the results can
be utilized in the dynamic design of the nonlinear
system.
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