DOI QR코드

DOI QR Code

Direct Bonded (Si/SiO2∥Si3N4/Si) SIO Wafer Pairs with Four-point Bending

사점굽힘시험법을 이용한 이종절연막 (Si/SiO2||Si3N4/Si) SOI 기판쌍의 접합강도 연구

  • 이상현 (서울시립대학교 재료공학과) ;
  • 송오성 (서울시립대학교 재료공학과)
  • Published : 2002.06.01

Abstract

$2000{\AA}-SiO_2/Si(100)$ and $560{\AA}-Si_3N_4/Si(100)$ wafers, which are 10 cm in diameter, were directly bonded using a rapid thermal annealing method. We fixed the anneal time of 30 second and varied the anneal temperatures from 600 to $1200^{\circ}C$. The bond strength of bonded wafer pairs at given anneal temperature were evaluated by a razor blade crack opening method and a four-point bonding method, respectively. The results clearly slow that the four-point bending method is more suitable for evaluating the small bond strength of 80~430 mJ/$\m^2$ compared to the razor blade crack opening method, which shows no anneal temperature dependence in small bond strength.

Keywords

References

  1. M. Shimbo. K. Furukawa, K. Fukuda, and K. Tanzawa, J. Appl. Phys. 60 (8), 2987 (1986) https://doi.org/10.1063/1.337750
  2. J.B. Lasky, Appl. Phys. Lett. 48, 78 (1986) https://doi.org/10.1063/1.96768
  3. Q.-Y. Tong, and U. Goesele, Science and Technology, New York, John Wiley & Sons, (1999)
  4. V. Lehmann, K. Mitani, R. Stengl, T. Mii and U. Goesele, Jpn. J. Appl. Phys. 28(12), L2141 (1989) https://doi.org/10.1143/JJAP.28.L2141
  5. M. Bruel, B. Aspar, and A.J. Auberton-Herve, Jpn. J. Appl. Phys. 36, 1636 (1997) https://doi.org/10.1143/JJAP.36.1636
  6. J.W. Lee, PhD. thesis, Seoul National University, (1999)
  7. O.S. Song, Y.M. Lee, S.H. Lee, J.W. Lee, and C.S. Kang, J. Korean Institute of Surface Engineering. 34(1), 33 (2001)
  8. Naoto Matsuo, Yoshirou Nakata, and Shouzou Okada, J. Appl. Phys. 70(10), 5085 (1991) https://doi.org/10.1063/1.349016
  9. B.D. Jensen, M.P. de Boer, N.D. Masters, P. Bitsie, D.A. LaVan, J. Micro. Systems, 10, 336 (2001) https://doi.org/10.1109/84.946779
  10. J.D. Zahn, A.A. Deshmukh, A.P. Pisano, D.J. Liepmann, Micro. Systems, 503 (2001)
  11. J. Robertson, and M.J. Powell, Apply. Phys. Lett., 44, 415 (1984) https://doi.org/10.1063/1.94794
  12. W.P. Maszara, G. Goetz, A. Caviglia, and J.B. McKitterick, J. Appl. Phys. 64, 4943 (1998) https://doi.org/10.1063/1.342443
  13. T. Abe T. Takei, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, Jpn. J. Appl. Phys., 29, L2311 (1990) https://doi.org/10.1143/JJAP.29.L2311
  14. B. Muller, A. Stoffel, J. Micromech. Microeng., 1, 125 (1991) https://doi.org/10.1088/0960-1317/1/3/006
  15. S.N. Farrens, C.E. Hunt, B.E. Roberds, and J.K. Smith, J. Electrochem. Soc, 141, 3225 (1994) https://doi.org/10.1149/1.2059307
  16. R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Engineering Fracture Mechanics, 61, 141 (1998) https://doi.org/10.1016/S0013-7944(98)00052-6
  17. J.K. Lee, Mechanical Properties of Ceramics, Seoul, Bando, (1994)
  18. S.H. Lee, S.D. Yi, T.Y. Seo, O.S. Song, Korean J. Materials Research, 12 (2), 117 (2001)
  19. T. Martini, J. Steinkirchner, and U. Gosele, J. Electrochem. Soc., 144(1), 354 (1997) https://doi.org/10.1149/1.1837409