DOI QR코드

DOI QR Code

Microstructure and Growth Behaviors of Ti Anodic Oxide Film for Photocatalysis

광촉매용 Ti 양극산화 피막의 조직 및 성장거동

  • Jang, Jae-Myeong (Dept. of Advanced Materials Engineering, Kookmin University) ;
  • Oh, Han-Jun (Dept. of Materials Engineering, Haseo University) ;
  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Cho, Su-Haeng (Dept. of Advanced Materials Engineering, Kookmin University) ;
  • Chi, Chung-Su (Dept. of Advanced Materials Engineering, Kookmin University)
  • 장재명 (국민대학교 신소재공학부) ;
  • 오한준 (한서대학교 재료공학과) ;
  • 이종호 (한서대학교 화학과) ;
  • 조수행 (국민대학교 신소재공학부) ;
  • 지충수 (국민대학교 신소재공학부)
  • Published : 2002.05.01

Abstract

The microstructure and growth behaviors of anodic oxide layers on titanium were investigated. $TiO_2$ oxide films were prepared by anodizing at constant voltages of 180 and 200V in sulfuric acid electrolyte. The anodic $TiO_2$ layer formed at 200V showed a cell structure with more irregular pore shapes around the interface between the anodic oxide layer and the substrate titanium compared with that formed at 180V. Irregular shape of pores at the initial stage of anodization seemed to be attributed to spark discharge phenomena which heavily occurred during increasing voltages. The thickness of the anodic oxide film increased linearly at a rate of $1.9{\times}10^{ -1}\mu\textrm{m}$/min. The oxide layers formed at 180 and 200V were composed mainly of anatase structure, and the anodizing process could be suggested as one of fabrication methods of photocatalytic $TiO_2$.

Keywords

References

  1. F.C. Gennari, J. Am. Ceramic Society, 82, 1915 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02016.x
  2. S. Goldstein, G.C. Zapski, and J. Rabani, J. Phys. Chem., 98,6586 (1994) https://doi.org/10.1021/j100077a026
  3. T. Shibata, Corros. Sci., 37, 253 (1995) https://doi.org/10.1016/0010-938X(94)00133-Q
  4. R.W.Matthews, Water Resour., 20, 569 (1986) https://doi.org/10.1016/0043-1354(86)90020-5
  5. A.L. Linsebigler, G. Lu, and J.T. Yates Jr., Chem. Rev., 95,735 (1995) https://doi.org/10.1021/cr00035a013
  6. E. Borgarello, J. Kiwi, E. Pelizzetti, and M.J. Visca, Am. Chem. Soc, 103, 6324 (1981) https://doi.org/10.1021/ja00411a010
  7. A. Scalfani, L. Palmisano, and E. Davi, New J. Chem. 14,265 (1990)
  8. H. Kominami, S. Murakami, Y. Kora, and B. Ohtani, Catalysis Lett., 56, 125 (1998) https://doi.org/10.1023/A:1019052911437
  9. M. Anpo, H. Yamashita, and Y. Ichihashi, J. Phys. Chem. B, 101,2632 (1997) https://doi.org/10.1021/jp962696h
  10. K. Shimizu, G.M. Brown, and H. Habazaki, Corros. Sci., 40,973 (1998)
  11. C.K. Dyer, and J.S. Leach, J. Electrochem, Soc., 125, 1032 (1978) https://doi.org/10.1149/1.2131616
  12. J.F. McAleer, and L.M. Peter, J. Electrochem. Soc. 129, 1252 (1982) https://doi.org/10.1149/1.2124097
  13. J. Yahalom, and J. Zahavi, Electrochim. Acta, 15, 1429 (1970) https://doi.org/10.1016/0013-4686(70)80064-0
  14. P. Aroal, and R.J.P. Corriu, J. Mater. Chem., 6, 1925 (1996) https://doi.org/10.1039/jm9960601925