DOI QR코드

DOI QR Code

Phase Transformation and Thermoelectric Properties of N-tyre β Processed by Mechanical Alloying

기계적 합금화로 제조한 N형 β의 상변화 및 열전 특성

  • Eo, Sun-Cheol (Dept. of Materials Science and Engineering/Nano Technology Lab., Chungju National University)
  • 어순철 (충주대학교 재료공학과/나노기술연구소)
  • Published : 2002.05.01

Abstract

N-type ${\beta}-FeSi_2$ with a nominal composition of $Fe_{0.98}Co_{0.02}Si_2$ powders has been produced by mechanical alloying process and consolidated by vacuum hot pressing. As-milled powders were of metastable state and fully transformed to ${\beta}-FeSi_2$ phase by subsequent isothermal annealing. However, as-consolidated $Fe_{0.98}Co_{0.02}Si_2$ consisted of untransformed mixture of ${\alpha}-Fe_2Si_ 5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting ${\beta}-FeSi_2$ phase. The transformation behavior of ${\beta}-FeSi_2$ was investigated by utilizing DTA, a modified TGA under magnetic field, SEM, and XRD analyses. Isothermal annealing at $830^{\circ}C$ in vacuum led to the thermoelectric semiconducting ${\beta}-FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties were remarkably improved by isothermal annealing due to the transformation from metallic $\alpha$ and $\varepsilon$ phases to semiconducting phases.

Keywords

References

  1. R.M. Ware and D.J. McNeil, Proc. IEE, 111(1), 178 (1964)
  2. U. Birkholz and J. Scheim, Fiz. Stat. Sol, 27, 413 (1968) https://doi.org/10.1002/pssb.19680270141
  3. P.Y. Dusausay, J. Protas, R. Wandi and B. Roques, Acta Crystal, B27 (1), 209 (1971)
  4. S. Tokita, T. Amano, M. Okabayashi and I. A. Nishida, Proc. 12th Int. Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 197 (1993)
  5. I. Isoda, Y. Shinohara, Y. Imai, I. A. Nishida and O. Ohashi, Proc. 17th Int. Conf. on Thermoelectrics, May 24-28, Nagoya, Japan, 390 (1998)
  6. I. Yamauchi, I. Ohnaka and S. Uyema, Proc. 12th Int. Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 289 (1993)
  7. S. Shiga, K. Fujimoto and M. Umemoto, Proc. 12th Int. Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 311 (1993)
  8. I. Nishida, Phy. Rev., B7, 2710 (1971)
  9. U. Birkholtz and J. Scheim, Phy. Stat. Sol, 27, 413 (1968) https://doi.org/10.1002/pssb.19680270141
  10. J.S. Benjamin, Met. Trans, 1, 1943 (1970) https://doi.org/10.1007/BF02642794
  11. D.M. Rowe and V.S. Schuka, J. Appl. Phys., 52(12), 7421 (1981) https://doi.org/10.1063/1.328733
  12. S.C. Ur and P. Nash, Metall. Mater. Trans., 25A(4), (1994) 871
  13. S.C. Ur, P. Nash and G. T. Higgins, Scripta Materialia 34(1), 53 (1996) https://doi.org/10.1016/1359-6462(95)00470-X
  14. S.C. Ur, I.H. Kim, S.J. Hwang, K.W. Cho and J.H. Choi, Kor. J. Mater, Research 11 (12), 1068, (2001)
  15. S.J. Hwang, P. Nash, M. Dollar and S. Dymek, Mater. Sci. Forum, 88-90, 611 (1990)
  16. M.Uemoto, Mater. Trans., JIM, 36, 373 (1995) https://doi.org/10.2320/matertrans1989.36.373
  17. T.B. Massalski, Binary alloy phase diagrams, ASM, (1986) 1108
  18. T.B. Massalski, Binary alloy phase diagrams,' ASM, (1986) 1103
  19. G.V. Raynor and V.G. Girlin, 'Phase equilibria in iron ternary alloy', Institutes of Metals, 47 (1988)
  20. T. Kojima, M. Okamoto, I. Nishida, Proc. 5th Int. Conf. on Thermoelectric Energy Conversion, 5 (1984)
  21. T. Sakata, Y. Sakai, H. Yoshino, H. Fujii and I. Nishida, J. Less Common Metals, 61, 301 (1978) https://doi.org/10.1016/0022-5088(78)90225-4
  22. S.C. Ur and I.H. Kim, Kor. J. Mater. Research 11 (2), 132, (2001)