DOI QR코드

DOI QR Code

The Crystallinity and Electrical Properties of SrBi2Ta2O9 Thin Films Fabricated by New Low Temperature Annealing

새로운 저온 열처리 공정으로 제조된 SrBi2Ta2O9 박막의 결정성 및 전기적 특성

  • Lee, Kwan (Department of Materials Science & Engineering, Korea University) ;
  • Choi, Hoon-Sang (Department of Materials Science & Engineering, Korea University) ;
  • Jang, Yu-Min (Department of Materials Science & Engineering, Korea University) ;
  • Choi, In-Hoon (Department of Materials Science & Engineering, Korea University)
  • 이관 (고려대학교 재료공학과) ;
  • 최훈상 (고려대학교 재료공학과) ;
  • 장유민 (고려대학교 재료공학과) ;
  • 최인훈 (고려대학교 재료공학과)
  • Published : 2002.05.01

Abstract

We studied growth and characterization of $SrBi_2Ta_2O_9$ (SBT) thin films fabricated by low temperature process under vacuum and/or oxygen ambient. A metal organic decomposition (MOD) method based on a spin-on technique and annealing process using a rapid thermal annealing (RTA) method was used to prepare the SBT films. The crystallinity of a ferroelectric phase of SBT thin films is related to the oxygen partial pressure during RTA process. Under an oxygen partial pressure higher than 30 Torr, the crystallization temperature inducing the ferroelectric SBT phase can be lowered to $650^{\circ}C$. Those films annealed at $650^{\circ}C$ in vacuum and oxygen ambient showed good ferroelectric properties, that is, the memory window of 0.5~0.9 V at applied voltage of 3~7 V and the leakage current density of 1.80{\times}10^{-8}$ A/$\textrm{cm}^2$ at an applied voltage of 5V. In comparison with the SBT thin films prepared at 80$0^{\circ}C$ in $O_2$ ambient by furnace annealing process, the SBT thin films prepared at $650^{\circ}C$ in vacuum and oxygen ambient using the RTA process showed a good crystallization and electrical properties which would be able to apply to the virtul device fabrication precess.

Keywords

References

  1. J.F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989) https://doi.org/10.1126/science.246.4936.1400
  2. Yasuyuki Ito, Maho Ushikubo, Seiichi Yokoyama and Hironori Matsunaga, Integrated Ferroelectrics 14, 123 (1997) https://doi.org/10.1080/10584589708019984
  3. B.A. Tuttle and R.W. Schwartz, MRS Bulletin Electriceramic Thin Films Part I, 49 (1996)
  4. Tingkai Li, Yongfei Zhu and Seshu B, Desu, Appl. Phys. Lett. 68, 616 (1996) https://doi.org/10.1063/1.116486
  5. Hitoshi Tabata, Hidekazu Tanaka, and Tomoji Kawai, Jpn. J. Appl. Phys. 34, 5146 (1995) https://doi.org/10.1143/JJAP.34.5146
  6. R. Dat and J.K. Lee, Appl. Phys. Lett. 67, 572 (1995) https://doi.org/10.1063/1.115173
  7. M. Mitsuya, N. Nukaga, T. Watanabe, H. Funakubo, and K. Saito, Jpn. J. Appl. Phys. Part 2-Letters 40, N. 7B,L758 (2001) https://doi.org/10.1143/JJAP.40.L758
  8. S. Chattopadhyay, A. Kvit, D. Kumar, A.K. Sharma, J. Sankar, J. Narayan, V.S. Knight, T.S. Coleman, and C. B. Lee, Appl. Phys. Lett. 78, 3514 (2001) https://doi.org/10.1063/1.1374226
  9. S. Bhattacharyya, A.R. James, and S.B. Krupanidhi, Solid State Communications 108, N.10, 759 (1998) https://doi.org/10.1016/S0038-1098(98)00425-6
  10. A.D. Li, D. Wu, H.Q. Ling, T. Yu, M. Wang, X.B. Yin, Z. G. Liu, N.B. Ming, Thin Solid Films 375, N.l-2, 215 (2000) https://doi.org/10.1016/S0040-6090(00)01240-2
  11. E. Atanassova, A. Paskaleva, Applied Surface Science 103,359 (1996) https://doi.org/10.1016/S0169-4332(96)00556-9