DOI QR코드

DOI QR Code

Effect of V and Sb on the Characteristics of β to α Transformation in Zr-0.84Sn Alloy

V과 Sb 첨가가 Zr-0.84Sn 합금의 β→α 상변태 특성에 미치는 영향

  • Published : 2002.04.01

Abstract

Effect of V and Sb content on characteristics of ${\beta}\;to\;{\alpha}$ phase transformation in Zr-0.84Sn alloy has been studied using optical microscopy and transmission electron microscopy. As V content increased, the ${\beta}{\to}{\beta}+{\alpha}$ transformation temperature was lowered, thus allowing the width of $\alpha$-lath in air-cooled Zr-0.86Sn-0.40V alloy to be fine. The width of ${\alpha}$-lath in air-cooled Zr-0.84Sn-xSb, however, was rarely changed with Sb content. The ${\beta}\;to\;{\alpha}$ transformed microstructures of water-quenched Zr-0.84Sn, Zr-0.84Sn-0.10V and Zr-0.84Sn-0.19V alloys were mainly slipped martensite. On the other hand, those of wafter-quenched Zr-0.86Sn-0.40V and Zr-0.85Sn-0.05Sb alloys were predominantly twinned martensite. In case of water-quenched Zr-0.85Sn-0.12Sb and Zr-0.84Sn-0.17Sb alloys, basketweave structure was observed. The transition of slipped martensite to twinned martensite in Zr-0.84Sn-xV alloys and the transition of twinned martensite to basketweave structure in Zr-0.84Sn-xSb alloys were due to the decrease of $M_s$ temperature.

Keywords

References

  1. P. Chemelle, D.B. Knorr, J.B. Van Der Sande and R.M. Pelloux, J. of Nucl. Mater., 113, 58 (1983) https://doi.org/10.1016/0022-3115(83)90166-6
  2. T. Kudo, Y. Wakashima, H. Imahashi and M. Vagai, J. of Nucl. Mater., 132, 126 (1985) https://doi.org/10.1016/0022-3115(85)90406-4
  3. K.U. Huang, J. of Nucl. Mater., 136, 16 (1985) https://doi.org/10.1016/0022-3115(85)90027-3
  4. W.J.S. Yang and R.B. Adamson, Proc.8th Int. Symp. on Zirconium in the Nuclear Industry ASTM-STP1023, California, CA, 1988, 451 (ASTM, Philadelphia, 1989)
  5. K. Loif, R. Borrelly and P. Merle, J. of Nucl. Mater., 210, 84 (1994) https://doi.org/10.1016/0022-3115(94)90226-7
  6. L.H. Keys, G. Johanson and A.S. Malin, J. of Nucl. Mater., Vol. 59, 137 (1976) https://doi.org/10.1016/0022-3115(76)90129-X
  7. D.O. Northwood and K. Dosen, Metallography, 13, 249 (1980) https://doi.org/10.1016/0026-0800(80)90004-X
  8. S. Banerjee and R. Krishan, Met. Trans. A, Vol. 4, 1811 (1973) https://doi.org/10.1007/BF02665407
  9. D. Srivastava, Madangopa K., S. Banerjee and S. Ranganathan, Acta Metall. Mater. Vol. 41, No.12, 3445 (1993) https://doi.org/10.1016/0956-7151(93)90224-G
  10. O.T. Woo and K. Tangri, J. of Nucl. Mater., 79, 82 (1979) https://doi.org/10.1016/0022-3115(79)90435-5
  11. G. Okvist and K. Kallstrom, J. of Nucl. Mater., 35, 316 (1970) https://doi.org/10.1016/0022-3115(70)90215-1
  12. T.B. Massalski et al., Binary alloy phase diagrams, Vol. 2, 2030, 2157 (ASM, ohio, 1986)
  13. C,M. Wayman, Proc. Int. Conf. On Solid-to-Solid Transformation, Pittsburgh, Pensylvania, USA Aug. 10-14, 1981 (AIME, New York, 1982)
  14. G. Krauss and A.R. Marder, Metallugical Transactions, Vol. 2, 2343 (1971) https://doi.org/10.1007/BF02814873
  15. I.S. Chung, K.C. Park and J.R. Huh,, J. of the Korean Inst. of Metals, Vol. 26, No. 9, 895 (1988)
  16. S. Banerjee and R. Krishan, Acta Metallurgica, Vol.19, 1317 (1971) https://doi.org/10.1016/0001-6160(71)90068-X
  17. N.V. Bangaru, J. of Nucl. Mater., 131, 280 (1985) https://doi.org/10.1016/0022-3115(85)90464-7
  18. J. of Nucl. Mater. v.131 N.V. Bangaru https://doi.org/10.1016/0022-3115(85)90464-7