DOI QR코드

DOI QR Code

Change of Phase Transformation and Microstructure of Alumina Membrane: I. Effect by Porosity of Support

알루미나 여과막의 상전이와 미세구조 변화: I. 지지체의 기공율에 의한 영향

  • Cheong, Hun (Korea Institute of Ceramic Engineering and Technology, Pottery Research Center) ;
  • Hwang, Kwang-Taek (Korea Institute of Ceramic Engineering and Technology, Pottery Research Center) ;
  • Choi, Duck-Kyun (Department of Inorganic Materials Engineering, Hanyang University) ;
  • Cheong, Deock-Soo (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology)
  • 정훈 (요업기술원 도자기연구센터) ;
  • 황광택 (요업기술원 도자기연구센터) ;
  • 최덕균 (한양대학교 세라믹공학과) ;
  • 정덕수 (한국과학기술연구원 복합기능세라믹연구센터)
  • Published : 2002.03.01

Abstract

The HPS(High Porosity Support, 39.3%) and the LPS( Low Porosity Support, 18.7%) were fabricated to investigate the phase transformation and the chance of microstructure with porosity of alumina support. Alumina sol was made using aluminum tri-sec $butoxide(ATSB,\; Al(O-Bu)_3)$, the membrane on porous support with different porosity and the membrane without support were fabricated. The $\theta$-to ${\alpha}-A1_2O_3$ phase transformation in the membranes was investigated using thin film X-ray diffraction (XRD), and the change of microstructure was observed using scanning electron microscopy(SEM). XRD patterns showed that the membrane on LPS and HPS had 10$0^{\circ}C$, 5$0^{\circ}C$ higher $\theta$-to ${\alpha}-A1_2O_3$ transformation temperature compared to the unsupported membrane. A similar effect was also observed in microstructure of the membranes, theoritical temperature difference were 97$^{\circ}C$ and 44$^{\circ}C$ by Crapeyron equation.

Keywords

References

  1. H.K. Lonsdale, J. Member. Sci., 10(81), 543 (1985)
  2. N. McMilen and M. Hojsak, Chem. Eng. Prog., Sep., 58 (1993)
  3. K. Scott and R. Hughes, in Chap. I, Blackie Academic & Professional, UK (1996)
  4. Y.S. Lin and A.J. Burggraaf, J. Am. Ceram. Soc., 74, 219 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb07320.x
  5. K.P. Kumar, V.T. Zaspalis, F.F.M. De Mul, K. Keizer and A.J. Burggraaf, Mater. Res. Soc. Symp. Proc., 271, 499 (1992) https://doi.org/10.1557/PROC-271-499
  6. K.K. Chan and A.M. Brownstein, Ceram. Bull., 70(4), 703 (1991)
  7. A. F. M. Leenaars and A.J. Burggraaf, J. Colloid and interface Sci., 105(1), 27 (1985) https://doi.org/10.1016/0021-9797(85)90343-1
  8. A.L. Larbot, J.P. Fabre, C. Guizard and L. Cot, J. Am. Ceram. Soc., 72(2), 257 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06111.x
  9. J.S. Gill, U.R. Marwah and B.M. Misra, J. Membr. Sci., 76, 154 (1993) https://doi.org/10.1016/0376-7388(93)85213-G
  10. R.S.A. de Lange, J.H.A. Hekkink, K. Keizer and A.J. Burggraaf, J. Member. Sci., 99, 57 (1995) https://doi.org/10.1016/0376-7388(94)00206-E
  11. M. Kumagai and G.L. Messing, J. Am. Ceram. Soc., 68, 500 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb15818.x
  12. I. Levin and D. Brandon, J. Am. Ceram. Soc., 81(8), 1995 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02581.x
  13. X. Yang, A.C. Pierre and D.R. Uhlmann, J. Non-Crystalline Solids, 100, 371 (1988) https://doi.org/10.1016/0022-3093(88)90048-8
  14. S.J. Wilson, J. Solid State Chem., 30, 247 (1979) https://doi.org/10.1016/0022-4596(79)90106-3
  15. F.W. Dynys and J. W. Halloran, J. Am. Ceram. Soc., 65(9), 442 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10511.x
  16. R.J.R Uhlhorn, M.H.B.J. Huis int Veld, K. Keizer and A.J. Burggraaf, J. Mater. Sci., 27, 527 (1992) https://doi.org/10.1007/BF00543947
  17. F.P. Knudsen, J. Am. Ceram. Soc., 45, 94 (1962) https://doi.org/10.1111/j.1151-2916.1962.tb11089.x
  18. H. Cheong, W.S. Cho, J.S. Ha, C.S. Kim, D.S. Cheong, J. alloy and compounds, 290, 304 (1999) https://doi.org/10.1016/S0925-8388(99)00240-6
  19. D.R. Gaskell (Ed.), Introduction to Metallurgical Thermodynamics, 2nd ed, Hemisphere, New York, 166 (1981)