Bull. Korean Math. Soc. 39 (2002), No. 2, pp. 269-276

A NECESSARY AND SUFFICIENT CONDITION FOR
THE CONVERGENCE OF THE MANN SEQUENCE
FOR A CLASS OF NONLINEAR OPERATORS

C. E. CuipuME aND B. V. C. NNOLI

ABSTRACT. Let E be a real Banach space. Let T : E — E be
a map with F(T) := {z € E : Tz = z} # 0 and satisfying the
accretive-type condition

(¢ =Tz, j(z = 2")) 2 Xz - Ta|}?,
for all z € F, z* € F(T) and A > 0. We prove some necessary
and sufficient conditions for the convergence of the Mann iterative
sequence to a fixed point of T.

1. Introduction

Let E be a real Banach space, E* its dual and let (.,.) denote the
generalized duality pairing between E and E*. Let J : E — 2E” be the
normalized duality mapping defined for each z € E by

J(x) = {f* € B : {z,f") = |l«|* = | F"*}.

It is well known that if E' is smooth then J is single-valued. In the sequel
we shall denote the single-valued normalized duality map by j.

A mapping T with domain D(T) and range R(T) in E is called strictly
pseudocontractive in the terminology of Browder and Petryshyn [1] if
there exists A > 0 and for all z, y € D(T') there exists j(z—y) € J(z—y)
such that

(1L1)  (Tz—Ty,jz-y) <lz—yl* - Mz —y— (Tz—Ty)|*
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Without loss in generality we may assume A € (0,1). If I denotes the
identity operator, then inequality (1.1) can be written in the form

(12) ((I-T)z—I-Tyjle—y) 2 M - Tz~ (I -Thyl*

We observe that if E = H (a Hilbert space), inequality (1.1) (and hence
(1.2)) is equivalent to the following inequality

(1-k)

2
(see e.g., [9]). Let F(T) := {z* € D(T) : * = Tz*} denote the set of
fixed points of T. If F(T) # 0 and (1.2) holds for all z € D(T) and
z* € F(T) then we obtain the following inequality

(1.4) (x — Tz, j(xz —z*)) > Mz — Tz|?

which is either called demicontractive (in the terminology of Hicks and
Kubicek [5]) or is said to satisfy condition(A) (in the terminology of
Maruster [7]). We adopt the former definition. If F(T) # 0, (1.3)
holds for k¥ = 0, and for all x € D(T) and z* € F(T) then T is quasi-
nonezpansive. Thus the class of demicontractive maps contains the class
of quasi-nonexpansive maps. It follows from (1.4) that

A 1+ A
Ay — 2| = Lz —2"||, where L:—j;—.

(13) 1Tz =Tyl < lle —yl® + kI = T)z — (I - T)yl?, A=

1
(L5) ||Tz—=z*|| <

The class of demicontractive maps has been studied by several authors
(see e.g., [1-3], [5], [9]). Let K be a closed convex subset of a Hilbert
space H and T : K — K strictly pseudocontractive, Browder and
Petryshyn [1] Proved the convergence of the Mann iterative sequence
[6] to a fixed point of T under the assumption that 7" is demiclosed at
0 (a map T is demiclosed at 0, see [7], if {u,} is a sequence in K which
converges weakly to u and {Tu,} converges strongly to 0 then Tw = 0).
In 1977 Maruster [7] and Hicks and Kubicek [5] studied the results of
Browder and Petryshyn [1] (though independently) when the map T is
demicontractive. Chidume [2] extended the results of Maruster 7] and
Hicks and Kubicek [5] to real Banach spaces which satisfy Linderstrauss
smoothness condition and admit weakly sequentially continuous duality
map. He then posed the following question:

Question. Can the requirement that E possesses a weakly continu-
ous duality map be dispensed with?

It is our purpose in this paper to prove some necessary and sufficient
conditions for the Mann iterative sequence (see e.g., [6]) to converge to
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fixed points of demicontractive maps. Our theorems provide an affir-
mative answer to the above question and also improve some important
known results in [1-3], [5], [9].

2. Preliminaries

In the sequel we shall make use of the following lemma and remark.

LEMMA 2.1. (See [[10] Lemma 1, p.303]). Let {3,}52, and {b,}o%
be sequences of nonnegative real numbers satisfying the inequality
/6’I‘L+1 < /87L + bn) n Z 1‘
If Yy~ by < 0o then Jim B, exists.

REMARK 2.2. Let E be a real normed linear space. ThenVz, y € E
the following inequality holds

(2.1) lz +ylI* < flzll? + 2y, j(z +v))
for j(x +y) € J(z +y).

3. Main results

For the rest of this paper, we denote by L > 0 the constant appearing
in inequality (1.5) and by A € (0, 1) the constant appearing in inequality

(1.1).

LEMMA 3.1. Let E be a real Banach space and T : E — E be a
demicontractive map with F(T) # 0. Let {an}>2; C [0,1] be a real

sequence such that Z a? < co. Let {z,}°°; be the sequence generated
from an arbitrary ac1 E E by
(3.1) Tn+1 = (1 —ap)zn + anTz,, n> 1
ThenVz* € F(T),
(a) There exists M > 0 such that ||z, — z*|| < M. Moreover lim

|xy, — a*|| exists. T
(1) |tne1 —2*|| < (1 + a2)|lzn — 2*|| + 6, where 8, = 2a2(1+ L)(3 +
L)M.

n+m-—1
n+m—1 a?

() ||Znim — | < D||lzn, —2*|| + D Y. a2, where D = *=»
k=n



272 C. E. Chidume and B. V. C. Nnoli

Proof of (a). From (1.4), (2.1) and (3.1) we get the following esti-
mates.
[Znt1 — 2|
(1 = an)l|zn — 2*[|? + 200 (Tzp — 27, j(Tp41 — %))
= (1=an)llzn — 2 + 200 (T0as1 — 2%, (@ny1 — 2%))
—2an(Tn+1 — TTnt1, j(Tns1 — 7))

+2a,(Txp, — TZny1,J(Tne1 — %))

< (1= ap)?llzn — &) + 20n][@nts — 2|
_ —20p M| znt1 — Tonia|?
(3:2) +2an Tz — Toni1l|Tns1 — =7
Moreover,
(3:3) |Znt1 — znll = anllzn — Tonll < an(l + L)z — 2™
and
(3.4) 41— 2" < [lentr — x|l + ||lzn — 27|
< [an(1+ L)+ 1jzn — o).

Substituting (3.3) and (3.4) in (3.2) yields

(e

(1 = an)?l|zn — 2% + 2anlan(l + L) + 12|z, — 2*|?
+2a,L{a,(1 + L)][an(1 + L) + ]|z, — a:*]|2

35) < [+allllzn —z*|* +2a2(1+ L)(3 + L)|lwn — =*||
(3.6) < (1+on)lzn — 2|7

where g, := a2[1+2(1+ L)(3+ L)]. Observe that > o0 ; 05, < co. From
(3.6) we get

IA

n
Izne1 =2 < T[T + 00l — 2*|* < €21 oy — 2%,

=1

So that ||z, — z*|| < M for some M > 0. If we set 8, = ||z, — 2*|| and
b, = 0, M then, by Lemma 1.1, lim |z, — a*|| exists.
n—oo

Proof of (b). From (3.5) we get

lnts = 2*I* < [L+aj + polllza — 2*|1%,



A necessary and sufficient condition 273

where p,, = 2a%(1 + L)(3 + L). Moreover

< L+ a2+ palZ e, — 2*|
< [1+a2 + polllzn — 2|

< (1+ad)lzn - z*|| + paM
(14 a2)llzn — z*|| + 6n,
where 6, 1= p,M = 2a%2(1 + L)(3+ L)M.

[€nt1 = 2|

i

Proof of (¢). From (b), for all positive integers n, m we get the
following estimates.

”xn+m - CL‘*”
<1+ agl+m—1)”l'n+m—1 = z"|| + Ongm—1
< (1 + a?L—}-m-—l)(l + a%+m—2)||xﬂ+m—2 - .’L‘*“

+ (1 + ai+m—1)5n+m—2 + 6n+m—1

n+m—1 n+m-—1 n+m—1
<< I G+adlen -2+ J] @+ad) D &
i=n i=n i=n
ol ol ndm—1
<e & al||xn—x*|]+e Z Z &;
i=n
n+m-—1
< Dlzn—z"l|+D Y &,
=n

n+m-—1

2
a;

where D = e i=n O

THEOREM 3.2. Let E be a real Banach space and T : E — E be
a demicontractive map with F(T) # 0. Let {an}%; C [0,1] be a real

o0
sequence such that Y a2 < co. Let {z,}52, be the sequence generated
n=
from an arbitrary x1 € E by
Tpse1 = (1 —ap)zp +anTz, n > 1.

Then {z,}22, converges to a fixed point of T if and only if liminf
n—oo
d(zn, F(T)) =0.
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Proof. From (b) of Lemma 3.1 we obtain
d(xp11, F(T)) < (1 + a2)d(z,,, F(T)) + 6,.

Since lim inf d(x,,. F(T)) = 0 we have from (a) of Lemma 2.1 that

n—0o0

lim d(z,, F(T)) =0.

n—0oo

It now suffices to show that {z,}52, is Cauchy. For this, let ¢ > 0 be

o0
given. Since lim d(z,, F(T')) = 0 and ) §; < oo, there exists a positive

integer Np such that Vn > Ny
€ ad €
< ;< —.
d(zn, F(T)) < 3D and ;51 <D

In particular there exists £* € F'(T) such that d(zy,,z*) < 5%5. Now
from Lemma 2.1 (c) we have, Vn > Nj, that

|Zn4m — Zall < |Tntm — 27| + |20 — 27|

Ni+m—1
< Dley, —2*|+D > &
=N
Ni+m-—1
+Dley, —a*|+D Y. 4
=N

<e

Hence lim z, exists (since E is complete). Suppose that lim z, = z*.
n—0o0 n—oo

We now show that z* € F(T). But given any é > 0 there exists a

positive integer No > N; such that Vn > Ny

-z’ < 0+ L) and  d(zn, F(T))

(3.7) lzn < 2(1—+.3TL—)

Thus, there exists y* € F(T) such that

€
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From (3.7), we obtain the following estimates.
[T — ||

< Tz —y*|| +2|Tzn, -yl + llen, =y + low, — 27|

< Llz" -yl + 2Lllen, —y*ll + oy, — 7l + o, — 27|

< Lllzn, — 'l + Lllzn, — ¥l + A+ 20)||lzn, — 3l + lzn, — 27|
= (I+D)lzn, — 2" + 11+ 1 +3L)|lzn, — v

< €

*

Since € > 0 is arbitrary we have that T'z* = z*. This completes the
proof. O

THEOREM 3.3. Let E be a real Banach space and T : E — E be
a demicontractive map with F(T) # 0. Let {a,}3, C [0,1] be a real

sequence such that Z a2 < 0o. Let {z,}5°, be the sequence generated
from an arbitrary xl E E by

Tos1 = (1 —ap)zn + a0 T2y, n>1
Then {z,}52; converges if and only if there exists some infinite subse-

quence of {x,}%%; which converges to z* € F(T').

Proof. Let x* € F(T) and {zy,}32, a subsequence of {z,};2, such

that lim |lz,; —z*|| = 0. Since, by Lemma 2.1 (a), lim ||z, —x*|| exists
j—ooo n—00

then lim ||z, — z*|| = 0. O
n—oo

REMARK 3.4. It is well known that if a Banach space E possesses
a weakly sequentially continuous duality map then E satisfies Opial’s
condition (see [4]). However, the L,(1 < p < oo0) spaces with p # 2 do
not satisfy Opial’s condition (see [8]). Our theorems apply, in particular,
to Ly, spaces, 1 < p < oo, thus providing an affirmative answer to the
above mentioned question of Chidume [2]. Furthermore, our theorems
improve the results in [1-3], [5], [7] and [9] in various ways.
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