DOI QR코드

DOI QR Code

Independent Component Analysis of EEG and Source Position Estimation

EEG신호의 독립성분 분석과 소스 위치추정

  • 김응수 (대전대학교 공과대학 컴퓨터정보통신공학부)
  • Published : 2002.02.01

Abstract

The EEG is a time series of electrical potentials representing the sum of a very large number of neuronal dendrite potentials in the brain. The collective dynamic behavior of neural mass of different brain structures can be assessed from EEG with depth electrodes measurements at regular time intervals. In recent years, the theory of nonlinear dynamics has developed methods for quantitative analysis of brain function. In this paper, we considered it is reasonable or not for ICA apply to EEG analysis. Then we applied ICA to EEG for big toe movement and separated the independent components for 15 samples. The strength of each independent component can be represented on the topological map. We represented ICA can be applied for time and spatial analysis of EEG.

뇌파(Electroencephalogram, EEG)는 뇌에서 막대한 수의 뉴런들의 전위차의 합으로 표현되는 시계열 전위차이다. 규칙적인 시간 간격으로 깊이를 가진 전극 측정에 의한 EEG로부터 서로 다른 구조를 가진 뇌에서의 뉴런 집단의 동역학을 평가할 수 있다. 최근에는 비선형 동역학 연구를 통해 뇌 기능 연구를 정량적으로 분석할 수 있는 방법이 개발되고 있다. 본 논문은 뇌파 신호를 분석함에 있어서 독립성분분석(Independent Component Analysis, ICA)의 적합성을 고려해 보았고, 15명의 정상인의 발가락 자극에 대한 EEG 신호에 이를 적용하여 독립 소스들을 분리해 내었다. 또한 Topological Hawing을 이용하여 각각의 독립 소스들의 기여도를 나타내었다. 이를 통하여 EEG에 독립성분분석을 적용함으로써 뇌 활동의 시간적, 공간적 분석이 가능하고 유용함을 나타내었다.

Keywords

References

  1. A. J. Bell and T. J. Sejnowski, 'An Information-maximization approach to blind separation and blind deconvolution,' Neural Computation, Vol.7, pp.1129-1159, 1995 https://doi.org/10.1162/neco.1995.7.6.1129
  2. Te-Won Lee, Mark Girolami and Terrence J. Sejnowski, 'Independent Component Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources,' Neural Computation, Vol. 11 , No.2, pp. 409-433, 1999 https://doi.org/10.1162/089976699300016719
  3. S. H. Chae, et al, 'Nonlinear analysis of EEG in various mental states of normal person,' Journal of Korean Neurological Association, Vol.8, No.5, pp.581-588, 2000
  4. K. Kobayashi, I. Merlet and J. Cotman, 'Separation of spike from background by independent component analysis with dipole modeling and comparison to intracranial recording,' Clinical Neurophysiology, Vol.12, pp.405-413, 2001 https://doi.org/10.1016/S1388-2457(01)00457-6
  5. S. Makeig, et al, 'Independent Component Analysis of Electroencephalographic Data,' 'Advances in Neural Information Processing Systems,' Vol.8, 1996
  6. L. Zhukov and D. Weinstein, 'Independent Component Analysis for EEG Source Localization,' IEEE Engineering in Medicine and Biology, pp.87-96, May/June, 2000 https://doi.org/10.1109/51.844386
  7. G. Wubbeler, et al, 'Independent Component Analysis of Noninvasively Recorded Cortical Magnetic DC-Fields in Humans,' IEEE Trans. on Biomedical Eng., Vol.47, No.5, pp.594 -599, 2000 https://doi.org/10.1109/10.841331
  8. R. Vigario, et al, 'Independent Component Analysis to the Analysis of EEG and MEG Recordings,' IEEE Trans. on Biomedical Eng., Vol.47, No.5, pp.589-593, 2000 https://doi.org/10.1109/10.841330
  9. J. Jeong, J. Core and B. Peterson, 'Mutual information analysis of the EEG in patients with Alzheimer's disease,' Clinical Neurophysiology, Vol.12, pp.827-835, 2001 https://doi.org/10.1016/S1388-2457(01)00513-2
  10. S. Blanco, et al, 'Using nonlinear dynamic metric tools for characterizing brain structures,' IEEE Engineering in Medicine and Biology, pp.83-92, July/August, 1997 https://doi.org/10.1109/51.603652
  11. J. C. Sigl and N. G. Chamoun, 'An Introduction to bispectral analysis for the electroencephalogram,' Journal of Clinical Monitoring, Vol.10, No.6, pp.392-404, 1994 https://doi.org/10.1007/BF01618421
  12. W. Lutzenberger, et al, 'Fractal dimension of electroencephalographic time series and underlying brain processes,' Biological Cybernetics, Vol.73, pp.477-482, 1995 https://doi.org/10.1007/BF00201482
  13. I. T. Jolliffe, 'Principal Component Analysis,' Springer-Verlag, 1986
  14. Te-Won Lee, 'Independent Component Analysis, Theory and Applications,' Kluwer Academic Publishers, 2001
  15. J. H. van Hateren and A. van der Schaaf, 'Independent component filters of natural images compared with simple cells in primary visual cortex,' Proc. Royal Society ser., B. 265, pp.359-366, 1998 https://doi.org/10.1098/rspb.1998.0303
  16. A. Hyvarinen, E. Oja, et al, 'Image feature extraction by sparse coding and independent component analysis,' Proc. Int. Conf. On Pattern Recognition, pp.1268- 1273, 1998 https://doi.org/10.1109/ICPR.1998.711932
  17. M. Lewicki and B. Olshausen, 'Inferring sparse, overcomplete images codes using an efficient coding framework,' Advances in Neural Information Processing, pp.815-821, MIT Press, 1998
  18. B. L. Jackson, 'Signals, System and Transforms,' Addison Wesley, 1991
  19. Saito Shoji, 'Clinical electroencephalography,' Ilchokak, 1987
  20. A. C. Papanicolaou and D. W. Loring, 'Task-related EEG asymmetries : a comparison of alpha blocking and beta enhancement,' Int. J. Neuroscience, pp.81-85, 1998
  21. H. Petsche, S. Kaplan, A V Stein, O. Filz, 'The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks,' Int. J. Psychophysiology, 26, pp.77-97, 1997 https://doi.org/10.1016/S0167-8760(97)00757-5
  22. S. Cochin, C. Barthelemy, et al, 'Perception of motion and qEEG activity in human adults,' Elecroencephal. Clin. Neurophysiol., pp.287-295, 1998 https://doi.org/10.1016/S0013-4694(98)00071-6
  23. E. Niedermeter, F. Silva, 'Electroencephalography Basic Principles,' Clinical Applications, and Related Fields, Fourth Edition, Lippincott Williams & Wilkins, 1999
  24. Private communication with K. G. Choi M. D who is a faculty member of the Department of Neurology at Ewha Womans University Medical School