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A SUFFICIENT CONDITION FOR THE
UNIQUENESS OF POSITIVE STEADY STATE
TO A REACTION DIFFUSION SYSTEM

JooN Hyuk KANG AND YUN MYUNG OH

ABSTRACT. In this paper, we concentrate on the uniqueness of the
positive solution for the general elliptic system

Au+u(gi(u) —g2(v)) =0,
{ Av + v(hn(u) - ha(v)) —0 % BTX D

ulan = vlva = 0.
This system is the general model for the steady state of a com-
petitive interacting system. The techniques used in this paper are
upper-lower solutions, maximum principles and spectrum estimates.
The arguments also rely on some detailed properties for the solution

of logistic equations.

1. Introduction

A lot of research has been focused on reaction-diffusion equations
modeling of various systems in mathematical biology, especially the ellip-
tic steady states of competitive and predator-prey interacting processes
with various boundary conditions.

In the earlier literature, investigations into mathematical biology
models were concerned with studying those with homogeneous Neu-
mann boundary conditions. From here on, the more important Dirichlet
problems, which allow flux across the boundary, became the subject of
study.(see [1], (2], [3], {7], [6], (9], [10]) While necessary and sufficient
conditions for the existence of positive solutions to the steady states
have been established for rather general types of systems(see [9], [10]),
our knowledge about the uniqueness of positive solutions is limited to
somewhat rather special systems, whose relative growth rates are linear;
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the results established are only for the following competition models (see
(21, (3], [6], [7])
Au+ula—bu—cv)=0
Av+v(d— fo—eu)=0
ulaq = vloq = 0.

in Q,

The question in this paper concerns the uniqueness of positive coexis-
tence when the relative growth rates are nonlinear, more precisely, the
uniqueness of positive steady state of

Autu(gi() - ga0) =0 .o
Av +v(hy(v) — ho(u)) =0 ’

ulan = vlag =0,

where g/s, h.s are C! functions, Q is a bounded domain in R" and u,v
are densities of two competitive species.

2. Preliminaries
In this section we will state some preliminary results which will be
useful for our later arguments.

DEFINITION 2.1. (Super and sub solutions)

) { Au+ f(z,u) =0 in Q,

where f € C*(Q x R) and €2 is a bounded domain in R".
(A) A function & € C*%((Q) satisfying

{ Au+ f(z,u) <0 in Q,

ulan =0,

tlon > 0
is called an super solution to (1).
(B) A function u € C%%(Q) satisfying
Au+ f(z,u) >0 in Q,
ulon <0
is called a sub solution to (1).
LEMMA 2.1. Let f(z,£) € C%(Q2 x R) and let 4, u € C*%(Q) be, re-

spectively, super and sub solutions to (1) which satisfy u(z) < u(z),z €
Q). Then (1) has a solution u € C**(Q) with u(z) < u(z) < @(x),r € Q.
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LEMMA 2.2. (The first eigenvalue)

—Au+ q(z)u = Au in £,
(2) —0
ulan = 0,
where q(z) is a smooth function from Q to R and Q is a bounded domain
in R™.
(A) The first eigenvalue \1(q), denoted by simply Ay when q = 0, is
simple with a positive eigenfunction.

(B) If g1(z) < go(z) for all z € , then A1(q1) < M (q2).
(C) (Variational Characterization of the first eigenvalue)

. fg)(lvd)'z +Q¢2)dx
M(q) =
19 ¢ew§%§.o¢o Jo P2da

LEMMA 2.3. (Maximum Principles)

Lu = Za” Dl]u+2a1 )Diu + a(z)u = f(z) in Q,
1,j=1

where 1 is a bounded domain in R"™.

(M1) 02 € C?2(0 < a < 1).

(M2) g (2)]as [0:(2) oy |a(@)la < M(i,j = 1,...ym).

(M3) L is uniformly elliptic in §), with ellipticity constant v, i.e., for
every z € § and every real vector £ = (£1,...,&p)

T

Z aij(z)&i§; > "/Z &l

ij=1 i=1

Let u € C?(Q2) N C(Q) be a solution of Lu > 0(Lu < 0) in Q.

(A) If a(z) = 0, then maxg u = maxgn u(ming u = mingg u).

(B) Ifa(z) < 0. then maxgu < maxgg u’ (ming v > — maxgnu™ ),
where ut = max(u,0),u” = — min(u,0).

(C) If a(z) = 0 and u attains its maximum (minimum) at an Interior
point of €, then u is identically a constant in Q.

(D) If a(z) < 0 and u attains a nonnegative maximum (nonpositive
minimum) at an interior point of §1, then u is identically a constant
in Q.

We also need some information on the solutions of the following lo-
gistic equations.
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LEmMA 2.4. ([10])

Au+uf(u)=0 in Q,
u(aQ =0,u >0,

where f is a decreasing C* function such that there exists co > 0 such
that f(u) < 0 foru > cg and Q) is a bounded domain in R™. If f(0) > A,
then the above equation has a unique positive solution, where A1 is
the first eigenvalue of —A with homogeneous boundary condition. We
denote this unique positive solution as 0;.

The main property about this positive solution is that 6 is increasing

as f is increasing,.

Especially, for a > A, we denote 8, as the unique positive solution of

Au+ula—u)=0 in ,
ulog = 0,u > 0.

Hence, 0, is increasing as a > 0 is increasing.

3. Uniqueness of steady state

We consider the elliptic system

Au+u(g1(u) — g2(v)) =0
(3) Av +v(hy(v) = ha(u)) =0
ulaq = v|aq = 0.

in €2,

Here Q2 is a bounded, smooth domain in R™ and the functions gis, h}s

satisfy

(U1) g1, 92, h1 and hy are C! functions,

(U2) g1, h1, —go, —hs are strictly decreasing,

(U3) g2(0) = ho(0) =0,

(U4) there are cg > 0,¢1 > 0 such that g;(u) < 0 for u > ¢y and
hi(v) < 0 for v > ¢;.

In 1991, Li and Logan ([10]) found some sufficient conditions to guar-
antee the existence of positive solution to (3). Here, we try to solve the
question of uniqueness. The following is the main result:

THEOREM 3.1. If
(A) 1(0) — ga(er) > A1, h1(0) — ha(co) > A1 and
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. . 4
(B) 4inf(—g})inf(-h)) > sup(g—ﬂ—)(sul)(glz))z
h1—h2(co)

g
+sup(5— ) (sup(h3))?
091 —ga(c1)
+2sup(g3) sup(hy),
then (3) has a unique coexistence state.

Biologically, we can interpret the conditions in Theorem 3.1 as fol-
lows. The functions g1, g3, h1, hy describe how species 1 (u) and 2 (v)
interact among themselves and with each other. Hence, the both condi-
tions (1) and (2) implies that species 1 interacts strongly among them-
selves and weakly with species 2. Similarly for species 2, they interact
more strongly among themselves than they do with species 1. Especially,
if we consider the linear case

Au+ula—bu—cv) =0
Av+v(d— fu—eu)=0
ulan = vlen = 0,

in €,

where a,b,¢,d, e, f are positive constants, then ¢;(u) = a — bu, g2(v) =
cv, hy(v) = d — fv and ha(u) = eu and so the condition (A) and (B) are
reduced to

(A" a—-T >>\1,d—f>)\

(B')  4bf > L sup(58-) + < sup(52

7 ™ 7 ) + 2ce.

cd
J

Proof. By the Maximum Principle, 8, < ¢;. But, since g2 is in-
creasing, g2(6n,) < g2(c1), and so, A1(A + (g1(0) — g2(6r,)) 1) > (A +
(91(0) — ga(c1))]) > 0, since g1(0) — g2(c1) > A; > 0. Similarly, we have
A1(A + (h1(0) — ha(bg,))I) > 0. Hence, by Theorem 1.1 in [10], (3) has
a positive solution. We concentrate the uniqueness part. Suppose (u, v)
is a positive solution to (3). Then

Au + ugi{u) = uga(v) >0 in Q,
{ ulaq = 0.
Hence, u is a subsolution to
Az+2g1(2) =0 in Q,
{ zlaq = 0.
Any constant which is bigger than ¢y is a supersolution to
Az +2g1(z) =0 in §,
{ zlon = 0.
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Therefore, by the super-sub solution method, we have

(4) u < by,.

The same argument shows

(5) v < O,

Since 0y, < ¢; by the Maximum Principle and g3 is increasing,
92(v) < g2(0n,) < ga(c1), we obtain

{ Au +u(g1(u) — gac1)) < Au+ u(gi(u) — g2(v)) =0 in Q,
ulan = 0.

Thus, u is a supersolution to

{ Az +2(g1(2) — g2(c1)) =0 in €,
zlaq = 0.
Let ¢ be the first eigenfunction of
Au+Adu=0 in Q,
{ ulan = 0.

If € > 0 is so small that gi(ed1) — g2(c1) — A1 > 0 on © (Such € exists,
because g;(0) — g2(c1) > A1 and g; is continuous.), then

Aepy + ep1(g1(ep1) — g2(c1)) = €[Ad1 + d1(g1(e¢1) — g2(e1))]
> e(A¢1+ A1)
= 0 in Q,

which implies that e, is a subsolution to
{ Az + 2(g1(2) — g2(c1)) =0 in Q,

zlga = 0.
Consequently,
(6) 0g1—gater) < u-
The same argument shows
(7) ehl—hz(CO) <w.
From (4)-(7), we get
(8) 991—92(01) < u < by, ehl‘—h&.’(co) S U< Oy

Consequently, for any positive solution (u,v) of (3), the inequalities (8)
hold.
Now we are ready to prove the uniqueness.
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Suppose (u1,v1) and (ug,vz) are positive solutions to (3). Let p =
u; —u9 and ¢ = v; — vy. Then

Ap+(g1(u1) — g2(v1))p = Auy — Auy + (g1(u1) — ga(v1))(u1 — uz)
= —Auy — (g1(u1) — ga(v1))ua
= —Aus — (g1(u2) — ga(va) — g1(u2) + ga{v2)
+g1(u1) — ga(v1))uz
= —uz(gi(u1) — g1(u2) + g2(v2) — g2(v1))
in ).

But, by the Mean Value Theorcmn, there is & depending on ui, uy such
that g;(u1) — g1(u2) = ¢1(Z)(—p). Hence,

Ap+ (g1(w1) — g2(n1))p = —ua(g1(u1) — g1(ua) + g2(v2) — ga(v1))
= —us[g1(Z)(—p) + g2(v2) — g2(v1)],

ie.,

(9) Ap+(91(u1) = g2(v1))p + u2pg1 (Z) — u2(g2(v1) — g2(v2)) = 0 in Q.

The same argument shows that
(10) Ag+ (h1(v2) — ho(u2))g +viqh) () — vi (ha(u1) — ha(ug)) = 0 in Q,

where z depends on v1,v2 by the Mean Value Theorem. Since A (A +
(91(u1) — g2(v1))I) = 0, by the Variational Characterization of the first
cigenvalue,

(1) | -2~ (g1t1) = )i 0
for any z € C%(2) and z|sn = 0. The same argument shows that
(12) —Aw — (hy(v2) — ha(uz))w)dz >0

for any w € C’Z(Q) and w|gn = 0. From (9) and (10), we get

{ —pAp — (g1(u1) — g2(v1))p* — g1 (&)u2p® + upp(ga(v1) — galvz)) = 0
—qAq — (h1(ve) — ha(u2))g® — Ay (2)v1% + vig(ha(ur) — ha(ug)) =0

in §2. Hence, from (11) and (12), we obtain

/Q ~ G, (#)uap® + uap(ga(v1) — ga(va)) + viqlhz(us)

— hQ(UQ)) — h',l (f)l‘qudI <0.
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By the Mean Value Theorem, for each x € €2, there exist ¢,y such that

g2(v1) — g2(v2) = g5(9)(v1 — v2) = g2(¥)g,
ha(u1) — ha(uz) = hy(F)(u1 — u2) = ha()p,

which implies that
/Q @ )uzp® + (uagh(§) + o1 (§))pa — My (Frgde < 0.

Therefore, we find
p=g=0 if —gi(#)uaC®+ (u295(§) +v1ha(7))¢n
—hy(T)u1n? is positive definite
for each = € Q.
This is the case if
2 1 ~\2 217 1 —\2 ! f~ ! = !~ ! (=
u295(9)° +v1ho(9)° + 2ugv195(9)ha(Y) — 491 ()] (T)ugvy <0
for each z € Q, ie.,
- LU - U _
19(@)n (@) 2 2h(0) + 20 (0)H(0) + o Pa(§)” for each z € Q.
But, from the inequality (8) and the hypothesis in the theorem,
20?2 + 20ha @) + Bh(H)?

9g1 /\12 0n 1\12
< a—— [sup(g5)] +———1——9914g2(61)[sup(h2)]
+2sup(gy) sup(hp)
< 4inf(—g})inf(—A))
< 4g1(2)R1 (),

and so p = ¢ = 0. The uniqueness is established.
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