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FIXED POINT THEOREMS, SECTION
PROPERTIES AND MINIMAX
INEQUALITIES ON K-G-CONVEX SPACES

MIRCEA BALAJ

ABSTRACT. In [11] Kim obtained fixed point theorems for maps
defined on some “locally G-convex” subsets of a generalized convex
space. Theorem 2 in Kim's article determines us to introduce, in
this paper, the notion of A-G-convex space. In this framework
we obtain fixed point theorcms, section properties and minimax
inequalities.

1. Introduction

Motivated by the well-known works of Horvath [7, 8, 9], there have
appeared many generalizations of the concept of convex subset of a topo-
logical vector space. The most general one seems to be that of general-
ized convex space or G-convez space introduced by Park and Kim [15],
which extends many of topological spaces having generalized convexity
structures.

In [11, Theorem 1] Kim extends the fixed point theorem of Kakutani-
Fan-Glicksberg to maps defined on some “locally G-convex” subsets of
G-convex spaces. Kim'’s result determines us to introduce, in this paper,
the notion of K-G-convex space. In this framework we obtain a fixed
point theorem for the composite of two Kakutani maps. Using this, we
get a new fixed point theorcm, scction properties and minimax inequali-
ties. A part of our results seem to be new even in the classical case (when
the K-G-convex space is a convex subset of a locally convex topological
vector space), although they are closely related to some known results.
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Let us recall the terminology from [11] needed in the sequel. For a
set A let |A| denote the cardinality of A and (A) the set of all nonempty
finite subsets of A. Let A, denote the standard n-simplex, that is,

n+1 n+1
A, = {u € R™ U= Z)\i(u)ei, A >0, Z)\i(u) = 1} s
i=1 i=1
where e; is the i-th unit vector in R*t1.
A generalized convez space or a G-convez space (X;I') consists of a
topological space X and a map I' : (X) — X satisfying:
(i) A,B e (X), AC B impliesT'y =T'(4) C I'p; and
(ii) for each A € (X) with [A] = n + 1 there exists a continuous
function ® 4 : A, — T'4 such that J € (A) implies ®4(A;) C T;.

Here A denotes the face of A,, corresponding to J € (A); that is, if
A ={a, ay, ..., apy1} and J = {a;,, ai,, ..., a;, } then Ay = co{e;,, €,
ceey eik}.

Note that I'4 does not need contain 4, for 4 € (X).

If for each A € (X)), T'4 is assumed to be contractible, then (X;T")
becomes an H-space [1, 2, 3] or a c-space (7, 8, 9]. There is a lot of other
examples of G-convex spaces, see [15].

For an G-convex space (X;I') a subset C of X is said to be G-convex
if A € (C) implies Ty C C. For a nonempty subset S of X, the G
-convex hull of S, is denoted and defined by

G-coS=nN{Y :SCY C X and Y is G-convex}.

In [11] Kim defines two types of subsets of an G-convex space. An
G-convex space which, in Kim’s terminology, is of type II will be called
in this paper an K-G-convex space. More exactly and K-G-convex space
is an G-convex space (X;T) satisfying the following conditions:

(i) for each z € X, {z} is G-convex; and

(ii) for any compact G-convex subset A of X and each open neighbor-
hood V of A there exists an open neighborhood U of A such that
G-coU C V.

Every convex subset X of a locally convex vector topological space
is an K-G-convex space by putting 'y = coA, where co denotes the
convex hull in the usual sense.

Let I be a nonempty finite index set. For each i € I, let (X;;T*%) be
an K-G-convex space and X = []..; X;. Define I': (X) — X by

Fa= Hrf‘li,

1€l
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where A; = p; (A) and p; : X — X, is the canonical projection. Then
(X;T') becomes an K-G-convex space with the product topology (see
[16]).

A map (or a multifunction) T : X — Y is a function from a set X
into the power set 2¥ of Y, that is, a function with the values Tz C Y
for z € X and the fibers T~y = {z € X : y € Tz} for y € Y. Given two
maps S : X —» Y, T:Y — Z the composite T oS : X — Z is defined
by (T'oS)x =T(Sz) =U{Ty:y € Sz}.

Let X and Y be topological spaces. A continuous selectionp: X — Y
of amap T : X — Y is a continuous function such that p(z) € Tz for
allz € X. Amap T : X — Y is said to be upper semicontinuous
(us.c.) if for each closed set F C Y the lower inverse of F' under T,
that is T7}(F) = {x € X : Tz N F # 0}, is a closed subset of X or,
equivalently, if for each open set G C Y the upper inverse of G under
T, that is TY1(G) = {z € X : Tz C G}, is an open subset of X.
Note that if Y is compact Hausdorff and T'z is closed for each z € X,
then 7 is upper semicontinuous if and only if the graph of T, that is
{{z,y) € X xY :y € Tz}, is closed in X x Y. Recall also that the
composite and the product of two u.s.c. maps are u.s.c., too.

Throughout this paper, we assume that any topological space is Haus-
dorff.

2. Fixed points for composite maps in K-G-convex spaces

If X is a topological space and (Y;I') an G-convex space we define
the classes of maps I?(X, Y) and K(X,Y) as follows:

T € K(X,Y) < T is us.c. with compact G-convex values.

TeK(X,Y)<Te K(X,Y) and Tz # 0 for each z € X.

We remark that in a special case the class K(X,Y) was considered
for the first time by Kakutani [10]. For this reason a map 7' € K(X,Y)
is called a Kakutani map.

The following result established in [11, Theorem 2| is the starting
point of our investigations. It extends to K-G-convex spaces the classical
Kakutani-Fan-Glicksberg fixed point theorem.

THEOREM 2.1. Let (X;T') be a compact K-G-convex space. Then
any T € K(X,X) has a fixed point.

THEOREM 2.2. Let (X;I'7), (Y;T'3) be two compact K-G-convex
spaces. Then for every two maps S € K(X,Y), T € K(Y,X) the
composite T o § has a fixed point.
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Proof. Consider the diagram
XxY2yxx¥ xxy,

where p(z,y) = (y,z) and [T x S|(y,z) = Ty x Sz. It is easy to see that
[T x S]ope K(X xY,X xY). By Theorem 2.1, the map [T x S]op
has a fixed point, i.e., for some (zg,y0) € X x Y we have (zg,v0) €
(T x S)(yo, o). Hence zg € Tyo, yo € Szo and consequently, zo €
(T o S)zp. O

Since any fixed point for the composite T o S is a coincidence point
for the maps T and S~!, Theorem 2.2 generalizes Granas and Liu [4,
Theorem 5.1].

THEOREM 2.3. Let (X;T;), (Y;I'2) be two compact K-G-convex
spaces, and S € K(X,Y). Let T : Y — X be a map having one of
the following properties:

(i) T has a continuous selection.

(ii) There exists a map R:Y — X such that
(ii1) G—co(Ry) C Ty for each y € Y;
(iiz) Y = U{IntR~ 1z : z € X}.
(iif) T has nonempty G-convex values and open fibers.
Then T o § has a fixed point.

Proof. Clearly (iii) implies (ii) and by assertion (i) of Theorem 1 in
[12] it follows that (ii) implies (i). Therefore it suffices to prove that ToS
has a fixed point if T has a continuous selection p. Since p € K(Y, X),
by Theorem 2.2 there exists xg € X such that zg € (p o S)zg, whence
Tg € (T oS ).1,'0. O

3. Selection properties, minimax inequalities

As a direct consequence of Theorem 2.2 we have:

THEOREM 3.1. Let (X;I'1), (Y;I'2) be two compact K-G-convex
spaces and M, N be two open subsets of X XY such that MUN = X xY.
Suppose that the following conditions are satisfied:

(i) For eachz € X,{y €Y : (z,y) ¢ M} is G-convex.

(ii) Foreachy €Y, {x € X : (z,y) ¢ N} is G-convex.
Then at least one of the following assertions holds:

(a) There exists a point zo € X such that {xo} x Y C M.

(b) There exists a point yg € Y such that X x {yo} C N.
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Proof. Let M' = (X x Y)\M and N’ = (X x Y)\N. Define S : X —
Y, T:Y — X by putting
St = {yev: (ny) eM},
Ty = {ze¢ X:(z,y)e N}
Since M’ is closed in X x Y, ecach Sz is closed in Y and the graph
of S is closed in X x Y. Hence S is uws.c. and by (i) it follows that
S € K(X,Y). Similarly we can prove that T € K(Y, X).
Suppose that both assertions (a) and (b) are not true. Then for each
x € X there exists y € Y such that (z,y) € M’, that is § € K(X,Y)
and similarly T € K(Y, X). By Theorem 2.2, T o S has a fixed point,
or equivalently there exists (zg,yg) € X x Y such that yg € Szg and
zo € Tyg. Then (zg,yo) € M'NN' which contradicts MUN = XxY. [

CoroLLARY 3.2. Let (X;T'1). (Y;I'2) be two compact K-G-convex
spaces and N be an open subset of X x Y satisfying:
(i) There exists a map T € K(X,Y') such that graphT C M.
(i) Foreachy € Y, {z € X : (x,y) ¢ N} is G-convex.
Then there exists a point yp € Y such that X x {yp} C N.
Proof. Consider the set
M =X xY\graphT
Since T € K(X,Y) it readily follows that:
M is an open subset of X x Y

foreach z € X, {y € Y : (z,y) ¢ M} is G-convex;
for each z € X, {2} xY ¢ M.

Moreover MUN = X xY. The conclusion follows from Theorem 3.1. []

COROLLARY 3.3. Let (X;I') be a compact K-G-convex space and M
be an open subsect of X x X satisfying:
(i) A={(z,z):ze X} C M.
(ii) For eachx € X, {y € X : (x,y) ¢ M} is G-convex.
Then there exists a point zg € X such that {zp} x X C M.

Proof. Apply Theorem 3.1 with Y = X, N = X x X\A and observe
that the assertion (b) in the couclusion of this thcorem cannot take
place. ]

THEOREM 3.4. Let (X;Ty), (Y;T3), M, N be as in Theorem 3.1.
Suppose that for each x € X there exists an open subset (possibly
empty) O, of Y such that:
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(ili) Foreachz € X, 0, C{y €Y : (z,y) ¢ N}.
(IV) UxeXOx =Y.
Then there exists zg € X such that {zo} xY C M.

Proof. Tt suffices to prove that under conditions (iii) and (iv) the
assertion (b) of the conclusion of Theorem 3.1 does not hold.

Since Y is compact there exists a finite set A = {z1,z2,...,Zp41} C X
such that ¥ = U?:*lloxi. Let {a; : 1 < i < n+ 1} be a continuous
partition of unity subordinated to the open covering {O, : 1 <7 < n+1}
of the compact Y, that is,

for each i, o; : Y — [0, 1] is continuous;
ai(y) > 0=y € Og;
"tla;(y) =1 for each y € Y.

Define a continuous map p: Y — A, by
n+1

ply) = ai(ye
i=1

(recall that the e; are vertices of A,). Let J(y) = {z; € A: a;(y) > 0}.
Then p(y) € Aj()- By the definition of G-convex space, there exists a
continuous function ®4 : A,, — I'4 such that ®4(A;) C 'y for each
J € (A). Therefore

*) (Paop)(y) € PalDyy)) C Ty
For each z; € J(y) we have y € O,,, hence by (iii), (z;,y) ¢ N. Since the

sets {x € X : (z,y) ¢ N} are G-convex (see condition (ii) in Theorem
3.1), from (*) we get

((®aop)(y),y) ¢ N foreach y €Y.
Hence X x {y} ¢ N foreach y €Y. d

Let (X;T) be an G-convex space. A function f : X — R will be
called G-quasiconcave if for each A € R the set {z € X : f(x) > A} is
G-convex and G-quasiconver if —f is G-quasiconcave.

THEOREM 3.5. Let (X;T;), (Y;I'2) be two compact K-G-convex
spaces, and f,g: X x Y — R two functions satisfying:
i) f=<g
(i) f is upper semicontinuous and g is lower semicontinuous on X XY .
(iii) For each z € X, f(z,-) is G-quasiconcave on Y.
(iv) For eachy €Y, g(-,y) is G-quasiconvex on X.
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Then, given any o, 8 € R, 3 < «, at least one of the following assertions
holds:

(a) There exists zg € X such that f(zg,y) < « foreachy €Y.
(b) There exists yg € Y such that g(x,yg) > B for each z € X.

Proof. Apply Theorem 3.1 with the sets:
M = {(z,y) e X xY : f(z,y) < a},
N = {(z,y) e X xY :g(z,y) > B}
From the hypothesis (i)-(iv) it follows readily that M, N are open in

XxY, MUN = X xY and assumptions (i) and (ii) of Theorem 3.1
are verified. The desired result follows now from Theorem 3.1. d

It would be of some interest to compare the next minimax inequality
with Theorem 18 of Park [14].

COROLLARY 3.6. Under the Lypothesis of Theorem 3.5 the following

inequality holds:
inf max f(z,y) < sup min g(z,
Jnf max f(z.y) Sup L ng(z,y)-

Proof. First let us observe that if f is upper semicontinuous on X XY,
then for each =z € X, f(z,-) is also an upper semicontinuous function
of y on Y and therefore its maxiimum mai.ch (z,y) on the compact set YV’

ye

exists. Similarly inf g(z,y) can be replaced by ming(z, y).
reX reX
Suppose the conclusion were false and choose two real numbers «, 3

such that

sup ming(z,y) < I < a < 1nf ma,xf(:r Y)-
,UEY r€X yE

We prove that neither the asscrtion (a) nor the assertion (b) of the
conclusion of Theorem 3.5 cannot take place.
If (a) happens, then

1n1§( max f(z,y) < de f(xg,y) < @, a contradiction.
r€X ycY

If (b) happens, then

sup min g(z,y) > rmn g{z,yg) > B, a contradiction again. 0
yey zeX
THEOREM 3.7. Let X, Y fyg be as in Theorem 3.5. If T : X — Y is
a map with nonempty values then the following inequality holds:

inf f(z,y) <sup mm glz,y).
yeTz yey reX
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Proof. We may assume that 1€n7f f(z,y) > —oo. Apply Theorem 3.5
yeTx
with the case @ = inf f(z,y), 8 = inf f(z,y) — ¢, where ¢ > 0 is
yeTx yeTz

arbitrarily fixed. Since the values of 7" are nonempty, the assertion (a)
of the conclusion of Theorem 3.5 cannot take place. It follows that there
exists yg € Y such that

i inf ,Y) — €.
min g(z, yo) > nf f (z,9)
Clearly this implies the desired minimax inequality. O

Close results in topological vector spaces have been obtained by Granas
and Liu [5, Theorem 7.1] and Ha [6, Theorem 1]. In both mentioned
results T is a Kakutani map while in our theorems T is only a map with
nonempty values.

In {14, Theorem 13] Park extends to G-convex spaces Fan’s minimax
inequality. The next result can be considered as a variant of Park’s
result.

CoOROLLARY 3.8. Let (X;I') be a compact K-G-convex space and
f,9: X x X — R two functions satisfying:

i) f<g

(ii) f is upper semicontinuous and g is lower semicontinuous on X x X .
(iii) For each z € X, f(z,-) is G-quasiconcave.
(iv) For each y € X, g(-,y) is G-quasiconvex.

Then we have

inf f(x,y) < i ,I).
Inf £ y)_sleljr; min g(z, )

Proof. Apply Theorem 3.7 with X =Y, Tz = {z}. O

REMARK. All the results obtained in this paper are applications
of Theorem 2.1. For this reason they remain true in other particular
compact G-convex spaces for which Theorem 2.1 holds. For instance
they remain true in compact ®-spaces (see {13, Theorem 4}), and in any
LC-space for which every singleton is G-convex (see [13, Theorem 5)).
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