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ON G-INVARIANT MINIMAL HYPERSURFACES
WITH CONSTANT SCALAR CURVATURE IN S§°

JAE-Upr So

ABSTRACT. Let G = O(2) x O(2) x O(2) and let M* be a closed
G-invariant minimal hypersurface with constant scalar curvature in
S5, If M* has 2 distinct principal curvatures at some point, then
S = 4. Moreover, if § > 4, then M? does not have simple principal
curvatures everywhere.

Introduction

Let M™ be a closed minimally immersed hypersurface in the unit
sphere S™*!, and h its second fundamental form. Denote by R and S its
scalar curvature and the square norm of h, respectively. It is well known
that S = n(n — 1) — R from the structure equations of both M™ and
Sn+1. In particular, S is constant if and only if M has constant scalar
curvature. In 1968, J. Simons [8] observed that if S < n everywhere and
S is constant, then S € {0, n}. Clearly, M™ is an equatorial sphere if
S = 0. And when S5 = n, M™ is indeed a product of spheres, due to the
works of Chern, do Carmo, and Kobayashi [3] and Lawson [5].

We are interested in the following conjecture posed by Chern [9].

CHERN CONJECTURE. For any n > 3, the set R,, of the real numbers
each of which can be realized as the constant scalar curvature of a closed
minimally immersed hypersurface in S"*! is discrete.

C. K. Peng and C. L. Terng [7] proved

THEOREM ([Peng and Terng, 1983]). Let M™ be a closed minimally
immersed hypersurface with constant scalar curvature in S*™*. If S > n,
then S > n+ 1/(12n).
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S. Chang [2] proved the following theorem by showing that § = 3 if
S > 3 and M?® has multiple principal curvatures at some point.

THEOREM ([Chang, 1993|). A closed minimally immersed hypersur-
face with constant scalar curvature in S* is either an equatorial 3-sphere,
a product of spheres, or a Cartan’s minimal hypersurface. In particular,
R, ={0,3,6}.

H. Yang and Q. M. Cheng [10] proved

THEOREM ([Yang and Cheng, 1998]). Let M™ be a closed minimally
immersed hypersurface with constant scalar curvature in S"*1. If S > n,
then S > n+n/3.

Let G~ O(k) xO(p) x O(q) C O(k+p+¢q) andset k+p+q=n+2.
Then W. Y. Hsiang (4] investigated G-invariant, minimal hypersurfaces,
M™ in 8™*1 by studying their generating curves, M" /G, in the orbit
space S"T!/G and proved

THEOREM ([Hsiang, 1987]). For each dimension n > 3, there exist
infinitely many, mutually noncongruent closed G-invariant minimal hy-
persurfaces in S"!, where G ~ O(k) x O(k) x O(q) and k = 2 or 3.

We studied G-invariant minimal hypersurfaces, in stead of minimal
ones, with constant scalar curvatures in S°. In this paper, we shall prove
the following theorem:

THEOREM. Let M* be a closed G-invariant minimal hypersurface
with constant scalar curvature in S°, where G = O(2) x O(2) x O(2).

(1) If M* has 2 distinct principal curvatures at some point, then
S =4.

(2) If S > 4, then M* does not have simple principal curvatures
everywhere.

1. Preliminaries

Let M™ be a manifold of dimension n immersed in a Riemannian
manifold N™**! of dimension n + 1. Let V and (, ) be the connection
and metric tensor respectively of Nt and let R be the curvature tensor
with respect to the connection V on N™*!. Choose a local orthonormal
frame field eq,...,en1 in N™*! such that after restriction to M™, the
e1,...,e, are tangent to M™. Denote the dual coframe by {w4}. Here
we will always use i, 4, k, ..., for indices running over {1,2,...,n} and
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A, B,C,..., over {1,2,...,n + 1}. As usual, the second fundamental
form h and the mean curvature H of M™ in N™*! are respectively
defined by

h(v,w) = (Vyw, ens1) and H = Zh(ei’ e;).

And the scalar curvature R of N"*! is defined by

R= ZU?'(EA’ €R)en, €A).
A.B

Then the structure equations of N"*! are given by

dwy = E wap ANwp, wap+wpa =0,
B

1
dwap = E wac Nwep — 5 E Kspcpwe Awp,
C C.D

where Kapcp = (R(ea, ep)en, e¢c). When N™*! is the unit sphere
S+l we have

Kapcp =04c0Bp —8ap 0BC-

Next, we restrict all tensors to A7". First of all, w,, ;1 = 0 on M™. Then

Zw(n+1)i ANw; =dwny1 = 0.
i

By Cartan’s lemma, we can write
Win+1)i = — E hijwj.
J

Here,
hij = “w(n+1)i(€j) = —<v«,6n+1, €i>
= (Vejei, 6n+1> == h(ej,ei) = h(ei,ej).
Second, from

dw; = E Wij ANWj, Wiy +u)jj:0,
J

1
dw;j = E wit Nwij — 3 E Rijim wi Awpy,
!

Lan
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we find the curvature tensor of M™ is
(1.1) Rijim = Kijim + hit hjm — him hy.

If M™ is a piece of minimally immersed hypersurface in the unit sphere
S™*+1 and R is the scalar curvature of M™, then we have

(1.2) R=n(n—1)-S5,

where S =3}, ; hZ; is the square norm of h.

Given a symmetric 2-tensor T =3, . T;j w; w; on M", we also define
its covariant derivatives, denoted by VT ,V2T and V3T, etc. with
components T5; k, Tijx and Tjj xip , respectively, as follows:

Y Tijrwe=dTy+ Y Tyjwei+ Y Tiswsj,
: ;
ijTij,m wi=dTik+ Y Tojk wsi
(1.3) | + ) Tisrwsi + > Tijos ek,
> Tijkipwp = dTijs,kl + > Tojk w + 3 Tho it we

D s s
+ E Tij st wek + E Tj ks wsl.-
S k]

In general, the resulting tensors are no longer symmetric, and the rule
to switch sub-index obeys the Ricci formula as follows:

Tijet — Tijk = Z Tsj Rsir + Z Ts Rsjri,
S S
Tijkip — Tijkpt = Z Tsjk Rsitp + Z Tisk Rsjip
k] S
(1.4) + Y Tijo Rokips
s
Tij kipm — Tij kimp = Z Tsj 11 Reipm + Z Tis, k1 Rojpm

+ Z T'ij,sl Rskpm + Z T’ij,ks Rslpm~
s s
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For the sake of simplicity, we always omit the comma (, ) between indices
in the special case T'= 37, ; h;; w; w; with NPt = gntl,
Since Y. p K(n+1)icp we Awp = 0 on M™ when N+l = §7FL e

find
d(z hijw;) = Z hjiwp A wys.
7.

J

Therefore,

> hijwi Aw; =Y (dhi; + > hjwi+ Y hawiy) Aw; = 0;
Jil 1

] !

i.e., h;; is symmetric in all indices.
Moreover, in the case that M"™ is minimal, we have

> hiu =Y huiji
! I
= Z{hlilj + Z(hmile]’l + h’lmRmijl)}
! m

(1.5) = (n— 1)h;; + Z { — hmihmihij + B (0m; 0t — Omidij

[ )
+ hmjhi — hmlhij)}
= nhi]’ - Zhlmhmlhij = (n - S)hij.

l,m

It follows that

1
(1.6) 5 A5 = (n—8)S+ Y R

i5,l
2. G-invariant Hypersurface in S"*!

For G =~ O(k) x O(p) x O(q), R"*2 splits into the orthogonal direct
sum of irreducible invariant subspaces, namely

R*""2 ~RF e RP @ R? = {(X,Y,2)}

where X is a generic k-vector, Y is a generic p-vector and Z is a generic
g-vector. Here if we set x = |[X|,y = Y| and z = |Z|, then the orbit
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space R"™2/G can be parametrized by (z, y, 2); =, ¥, 2 € R and the
orbital distance metric is given by ds? = dz? + dy? + dz?. By restricting
the above G-action to the unit sphere S”*! c R"*2 it is easy to see
that

SG = {(z,y,2): ¥+ P + 2P =L a, y, 2 > 0}

which is isometric to a spherical triangle of S?(1) with 7/2 as its three
angles. The orbit labeled by (z,y,2) is exactly S~ 1(z) x SP~1(y) x
S971(2).

Analytically, it is more convenient to use the following polar coordi-
nate system of S"*! /G, namely, by performing the coordinate transfor-
mation:

z=cosr, T=sinrcosf, y=sinrsingd, 0<r 8<

ol 3

To investigate those G-invariant minimal hypersurfaces, M™, in S™+!
we study their generating curves, v(s) = M"/G, in the orbit space
S /G 4, 6].

LEMMA 2.1. Let M™ be a G-invariant hypersurface in S"*1. Then

there is a local orthonormal frame field ey, ...,e,41 in S?*! such that
after restriction to M™, the e1, ..., e, are tangent to M™ and h;; = 0 if
i1# 7.

PROOF. Let (Xo, Yy, Zo) € M™ C S™*! with z = | Xy, y = |Yo| and
z = |Zp| and choose a local orthonormal frame field on a neighborhood
of (Xo, Yo, Zo) as follows.

First, we choose vector fields 4y, ..., Ug—1, U1,...,Up—1, Wi, ..,Wg-1
on a neighborhood U of (Xg, Yy, Zp) in the orbit $*¥~1(z) x SP~1(y) x
S9-1(z) such that:

(1) uy,...,ux—1 are lifts of orthonormal tangent vector fields uq, ...,
uk_y on a neighborhood of Xg in $¥71(z) to S¥~1(z) x SP~1(y)
x §971(z) respectively,

(2) w1, ..., Up_1 are lifts of orthonormal tangent vector fields vy, .. .,
vp—1 on a neighborhood of Yy in SP~1(y) to S¥~1(z) x SP~1(y)
x S§771(z) respectively,

(3) w1, ..., Wg—1 are lifts of orthonormal tangent vector fields wy,
..., Wy—1 on a neighborhood of Zp in S771(z) to S*~'(z) x
SP=1(y) x S971(z) respectively.

Second, let c(t) = (c1(¢), ca(t), c3(t)) be the unit speed geodesic in

S™+1 /G orthogonal to the curve 7(s) = (z(s), y(s), z(s)). For each
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P = (X,Y,2) € U, let 7(P,s) and ¢(P,t) be the horizontal lifts in
S™*1 of y(s) and c(t) through P respectively. Then we see

T (Ps) = (2'(6) = ¥/ () -, # ()5

and x v 7
& (Pt =(’t—, O ’t—).
#(P.0) = (07 40~ (07
Third, we extend these vector fields over a neighborhood of (Xg, Yo, Zo)
in §™*1 as follows:
(1) we translate w1, ..., Up—1, V1, ..., Up—1, Wi, ..., We—; parallel
along 7 and ¢.
(2) we extend 7’ and ¢ in the usual fashion.

Then these extended vector fields Uy, ..., Uk—1, U1, ..., Up—1, Wiy -,
Wy—1, V', € is a local orthonormal frame field in S"*!. After restriction
these vector fields to M™, Uy, ..., Uk—1, V1y..,Up_1, W1,...,Wq_1,7 are
tangent to M"™. For convenience, we write them as ey, ..., e,41, in order.

Let &;(u) = (ai(u), Y, Z) be a curve in S¥~1(z) x SP~1(y) x §971(2)
through P with &}(0) = (¢£(0), 0, 0) = u;(P). Then,

Hau(w), ) = (262, w7, 20)7),

z Y z
and v p
@i (u),t) = (c1 (t)O‘ZT“), elt) c;:,(t);)
It implies that
¥ @), 5) = (025, 9 7, 29 2),

and

Hence, we have

o Vo = {22 (al(0), 0, 0))T
= (g = 2O qp),
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Vair® = {2 (aif0), 0,00} = {4Q3,p)} T = 40 g p)

hij = (Va,(p)t;, €(0)) = —(@;(P), Va,p)¢)
= ~(u,p), W% p) ) = 290,

T

In the same way, we have

4

h(k—1+i)(k—1+j) = (vﬁi(P)aj’ &4> =
4 h(k+p—2+i)(k+p—2+j) = <vmi(P){Dj’ 5’) =
h(ah;‘);l) h’(’?jh%/) = h(wl’&'/) =0.

And, since V(pyy' = (2”(0),y"(0),2"(0)) T,

~, 64>

(v
<(w"<o>f VO SO G053 07, 40D))
(
(v

"(0)c1(0) +4"(0 ) c3(0) + 2"(0) ¢3(0)
(0),4(0),2"(0)), n)
’Y) >_ K/g(’Y),

Il

('

where n = (¢1’(0), c2’(0), c3’(0)). Recall that
v(s) = (sinr(s) cos(s),sinr(s)sinf(s),cosr(s)).

Then, we have
dr O d9 0

7(s) = ds 8r ds 98’

where 0/0r = (cosrcosf, cosrsind, —sinr) and 8/08 = sinr(—sinf
cosf, 0). Thus, we see

‘%‘:1, |%12=sin2r, and <%, 585 >=0.
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And we see

dr\?  (do\® @ , (dr\? & [do\?
N2 = [ 8T avy 9o _[ar avy o2
L=l (ds) + (ds> 56! <ds) * (ds> s
Hence, we obtain
3}
_ r Y '
cosa = <’y, 8r> /1
where « is the angle between the curve v and the radial direction 8/0r.

Suppose S"*!/G is orientated by the frame field {(8/dr), 1/sinr
(8/86)} and U = (8/0r) x1/sinr (8/80). Then we have

cf‘)'ﬁdr and sina—de sinr
orl  ds T ds ’

. _ . dr 8 df 0
n=UxT=UxXv —Ux<d36r+ds T
_Ydro . 400
" sinrds 96 S ds Or

dr ) . db . .
T (—sinf,cos6,0) — s1nr£ (cosTcosf,cosrsinf, —sinr)
= (01/(0)’62/(0)’631(0))-

Thus, we get

kg(7) = (V4v', n)

(v (2 WY (L w0y,
- Y \dsor ' dso8 )’ \sinrds 00

mro o
da ae
= T + cos r—CE.
Therefore, we compute
r hi; = _al0) = COST il tz?né?ﬁ,
z ds sinr ds

h(k—l-ri)(kll—i—i) = -

c5(0) — cosr dé cot8dr

ST —— .
ds sinrds’

(2:2) \ a5 (0) sin® r df
Pp=2i)orpi) = z  cosrds’

da dg

hpn = /'Cg(’y) = d—s + cosrg,

Lhij =0, i i#]

The proof of Lemma 2.1 is complete.
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LEMMA 2.2. Let M™ be a G-invariant hypersurface in S™*! and let
{ea} be alocal orthonormal frame field in S"1! as in Lemma 2.1. Then,
(a) all hyj; = O except when {i,j,l} is a permutation of either
{i,%,n},
(b) if § #1, then hii]‘l = hjlii = hjjjl = hljjj =0,
(c) ifi,j,1,m are distinct, then h;j;m = 0.

PRrOOF. (a) Since h;j;; is symmetric in all indices, it suffices to show
that hy;; = 0if ¢ <j <land {i,5,1} # {i,i,n}.
(a.1) In the case j #4, Lemma 3.1 implies that h;; =0 and

(2.3) hiji = el(hij)+z hsj W.si(el)+2 his wsj(er) = (hjj—his) wis(er).

Since h;; = hj; if 4,5 < k —1, (2.3) implies h;; = 0 for all {.
fk<i,j<k+p—2ork+p—1<4,j<n-—1,then also h;j; =0
for all 1.
And,ifi <k — 1 and k& < j < n, then for all { we have

(24) h,‘jl = hlij = (hn - hll)wil (ej) = (h'm - hll)<vej €y el) = 0’

since V. e; = 0 by the Koszul formula. In the similar cases, we also
have hijl = 0.

Moreover, if j =1 = n, then hin, = hpni = €i(hnn) = 0 since Ay, is
constant on each orbit from (2.2).

(a.2) In the case 5 =i and [ # n, since h;; is constant on each orbit
from (2.2),

(2.5) hiji = hi = 6l(hii)+z hsi wsi(et)+z his wsi(er) = e(hsi) = 0.
8 S

Therefore, we see all h;j; = 0 except when {4,j,1} is a permutation of
either {i,7,n}.

(b) Ifj # 1, then e;(hiij) = e;{e;(his)} = ej{ei(hi;)} = 0 since neither
7 nor [ is n and hy; is constant on each orbit. Hence, we have

hiiji = ei(hisj) + Z hgij wsi(er) + Z hisj wsi(er)
(26) + Zhiis wsj(el)

= 2hjij w]'i(el) — hiin Wnj (el) =0,
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since hjj; = 01if i # n and wyj(er) = (Ve en, e;) =0 from (2.1).
And since j # [, from (1.4), Lemma 2.1 and (2.6) we also have

(27) h]ln = hz]lz = hzgzl + Z hs] Rszlz Z hzs nglz
- hujl + h]] Ryzlz + hzz Rz]lz = 0.

Moreover,

hjjz = ei(hjj;) + Z hsjjwyj(e) + Z hjsjwsj(er)
(28) + 3 hte)
= 3hjjn wnj (61) = 0,

since el(h]’jj) = el{ej(hjj)} = ej{el(hjj)} =0 and wnj(el) = 0.
And so,

higsi = hijus
(2.9) = hjjj+ Y h Rujij + Y hjs Rsji
= 2hj; Rjji; = 0.
(¢) Without loss of generality, it suffices to show that hiji, = hijm =

0 and h;jim = 0 for all ¢, j, [, m such that i, j, [, m < n.
By using (a), we easily see that

hz]ln = en z]l + } hsglwsz en + § hisi Ws en)

+§ hz].swsl en - a

since i, 7, | < n and 1, j,[ are distinct.
And, from (1.4) and Lemma 2.1 we also have

(2.10)

hijnl 1]171 + Z hS] Rsznl + Z hzs ngnl

= h’]j R]an + h’ll Runl - 0

(2.11)
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If 4, 4, I, m < n, from (a) we can easily see

hijim = em(hiji) + Z{hsjl wsj(em)

A2
(2 ) + hisl Wsj (em) + hijs wsl(em)}
=0.
It completes the proof of Lemma 2.2. a

Under such frame field as Lemma 2.1, we have

(213) ek(hu) = hmk Z hszwsz ek Z hzswsz ek: zzk-

Hence, in the case M™ is minimal, by differentiating > . hmm =0
we have

0= (eei = Ve,e) (3 um)
- Z{ej (hmms) — Zm:wis(ej)h'mms}
(2.14) = Z hummi — Zhsml Wem (€5) Z hmsi Wsm (€;)
- 2 P Wi (€5) thmswzs e5)
= hmmij-

m

Moreover, we have
a(TH) =2 S hetn
1%
= ZZ h”{hz]k Z hsgwsz ek:
- Zhiswsj ek
-1
=2 hijhiji.
i’j

(2.15)
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Hence, in the case S is constant, by differentiating Z h2 = S twice,

we have
(2.16)

1 )
0= (e ek — Ve ex) (Ethj)
= Zel hz]hz]k Zwks el ij 1]5
1,7 i,7,8

= Z{el(hij)hzjk + hije(hiji)} Zh”hmwkS er)

i i,].8

= Z{ il — Zh.,] w” Cl ths ws] €] } ijk
+th{ ijkl — Z [hsjl\rwsi(el)

+ hisk wsj(er) + hijs ‘Usk(el)] } - Z hijhijs wis(er)

1,7.8
= Z hijhijer + hijphii
i,J
- Z{hsjhijk wsier) + hishijr wyjler) + hijhgjr wei(er)
1,9,8
+ hijhisk wsj(er) + hijhijs wer(er) + hijhijs wies(er) }
= Z hijhijir + hijihiji
i,
- Z{hsjhijk wgiler) + hishije wsj(er) + hgjhijr wis(er)
7,4,8

+ hishijr wis(er) + hijhijs wsk(er) + Rijhijs wis(e) }

= Z hishiskr + Z Rijk Riji-
z i,j

3. G-invariant minimal hypersurface in 5°

Throughout this section, we assume that G ~ O(2) x O(2) x O(2) and
M* is a closed G-invariant minimal hypersurface with constant scalar
curvature in S°. Let {e4} be a local orthonormal frame field in S° as
in Lemma 2.1. Then by differentiating Y, h;; = 0 and Y, h% = S with
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respect to ey respectively, we have

(3.1) hiig + hooa + h3za + haasa =0,
(3.2) hi1h114 + haghoos + hazhass + haghgsg = 0.

From (1.5), we also have
(3.3) hisnn + hiioz + hiiss + hsiga = (4 — S)his.

Here, if 7 # 4, from (1.3) we know

hiia = hiai = ei(hia) + Z hsaws;(e;) + hiswsa(e;)

(3.4)
= (h44 - hii)w4i(€i)
and
hiiii = €i(hiis) + Z{hsiiwsi(ei) + hisiwsi(€:) + hiiswsi(e:)}
(3.5) P

= 3hiia wyi(€:)-
Moreover, if 7, j # 4 and if © # j,

66) hiigy = 5(hiig) + Y {hoijwsi(e;) + isjwsi(e;) + hisswss(es)}

= hiiq wa;(€;5)-
Now, to prove our Theorem we need the following two lemmas.

LEMMA 3.1. Suppose h;; = hgqg = X at some point p forit =1, 2 or
3. Then,

122% + 4)2
(3.7) S = v

Proor. Without loss of generality, we can assume hgz = hgq = A
at some point p. By using (3.4), we have hz3s(p) = 0. Using (3.5) and
(3.6), we have at p

(3.8) h3311 = hazge = h3zzz = 0.
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Hence, (3.3) and (3.8) imply
(3.9) hasas = (4 — S)has
and (1.4) implies
(3.10) haass = hazaa + (hag — haz)(1 + hyshss) = hagaa.
Since 3, ; h¥s = 0 at p, from (2.16) we have
(3.11) hi1hii33 + hog hoazs + has hasss + hag hagss = 0.
Let h;; = A;. Then, by using (1.4) and (3.8) we know
(312)  hrgs = hagiy + (hy — AL+ At A) = (A1 — A)(L 4+ A1 \)
and
ha2as = hazoz + (hoz — A)(1 4+ haa A) = (A2 — A)(1 + Az A).
Hence, (3.11) and (3.12) imply
(3.13) At (A= AJL+ A A) + A2 (Ao~ N1+ Aa A) + A4 = S)A =0,
that is,
A A=A+ 22+ A+ A - A2+ MDA+ (4= S)A2 =0,

Here, since

ALt +2X0=0, A+ A5 +24° =5, /\1/\2=3/\2—§,

AT+ A = (AT 423 = A A2)(A1 + Ag) = 10A3 — 35,
(3.13) becomes
S —2X% — (20X + (10A3 = 3SMA — (S = 222X 2 + (4 — S)AZ =0
and so,

120% 4 472
5\2 -1
It completes the proof of Lemma 3.1. O

S =
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LEMMA 3.2. If S >4 and i =1, 2, 3, then for each i, there exists a
point g; in M* so that hy;(g;) = 0.

ProOOF. Suppose that the conclusion is not valid. Without loss of
generality, we can assume that hzs > 0 everywhere. Consider a point
Do, such that

h = min hgz > 0.
33(Po) o fas

Then, due to the maximal principle, we have

(3.14) 64(h33)(p0) = h334(p0) =0 and
Hess. h33(€4, 64)(])0) = (64 €4 — Ve4e4)(h33) = 0.
Hence, from (3.14) we have at pg

(3.15) Hess. has(es, e4) = hggaq — Zw4s(e4)h’335 = h3344 > 0.

S

Since h334(po) = 0, using (3.5) and (3.6) as in Lemma 4.1, we have at

Do
haz11 = hazae = hgszz =0

and so,
(3.16) hssas = (4 — S)hs3.
By using (3.15) and (3.16), we have at pg
hagas = (4 = S)hs3 20,
which is contrary to the hypothesis S > 4. It completes the proof. [

We are ready to prove our Theorem:

THEOREM. Let M* be a closed G-invariant minimal hypersurface
with constant scalar curvature in S°, where G = O(2) x O(2) x O(2).
(1) If M* has 2 distinct principal curvatures at some point, then
S =4.
(2) If S > 4, then M* does not have simple principal curvatures
everywhere.
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PrROOF. (1) Suppose M* has 2 distinct principal curvatures at some
point, say, p. Without loss of generality, we can assume either one of
the following three cases for some X # 0:

Case 1. Suppose hy; = hog = hgz = X and hyy = —3\ at the point
p. Then from (2.2), we have at p

Tglg tanﬂﬁ_ ‘Tﬁ_cotHdr_ sin’r df
€08 ds  snrds 7 4s sint ds  cosr ds’
It implies that
dr df
d—s = 0 and E = O,

which means that hy; = hog = hys = hyy = A = 0 at p. It is contrary to
the hypothesis.

Case 2. Suppose hgy = haz = hyy = X and h;; = —3X\ at the point
p. Then

(3.13) S = h3 + h3y + hi; + h2, = 12)%

Hence, (3.7) and (3.13) imply S = 4. i.e. M* = S'(y/1/4)x S3(\/3/4).

Case 3. Suppose hy1 = hgs = —A, hgy = hy = )X at the point p.
Then

(3.14) S = hi, + h3, + h3, + h2, = 4X2

Hence, (3.7) and (3.14) imply S = 4. i.e. M* = S?(1/1/2) x §%2(\/1/2).
But, it is not G-invariant.

(2) Suppose that M* has only simple principal curvatures every-
where. Then since all principal curvatures h;;’s are constant on each
orbit, without loss of generality we can assume everywhere either one of
the following three cases:

(@) hi; < hoy < hgy < hag or
(b) h11 < hgs < hgg < hgz or
(C) hag < hip < fioo < has.
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But by Lemma 3.2, there exist points ¢; and g3 in M* such that h11(q1) =
0 and h33(g3) = 0 respectively. Hence the above each case is contrary
to the fact that

h11(g1) + ho2(g1) + ha3(q1) + haa(q1) =0 or
h11(g3) + hoa(gs) + haz(qs) + haa(gs) = 0.

Therefore, M* does not have simple principal curvatures everywhere.(
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