DOI QR코드

DOI QR Code

Production of Biosurfactant Using Bacillus spp

Bacillus spp.를 이용한 Biosurfactant 생산공정

  • Published : 2002.06.01

Abstract

Among the bacterial strains isolated from chungkook-jang, Bacillus subtilis CH-1, Bacills circulans K-1 and Bacillus subtitis (natto) N-1, Bacillus subtitis CH-1 showed the highest productivity of biosufactant. A-medium was selected for the basal medium in the large scale production of biosurfactant, and modified to synthetic medium which containing 2% glucose, 0.3% soy peptone, and mineral salts. The surface tension was reduced to maximal value after 96 hr after fermentation, about the 43% of initial tension. Temperature and initial pH of medium was not critical factor for the biosurfactant production. The yield of crude biosurfactant was 6 g/L under the optimum condition.

청국장에서 분리한 Bacillus subtilis CH-1, Bacillus circul문 K-1과 Bacillus subtilis(natto) N-1 모두 biosurfactant를 생성하며 이 중 Bacillus subtilis CH-1가 가장 큰 생성력을 나타냈다. Biosurfactant를 대량 생산하기 위하여 AM, LM, NB과 TSB 배지중 AM을 기본배지로 선정하여 최적 탄소원과 질소원으로 glucose 2%, soy peptone 0.3%와 무기염을 포함하는 합성배지를 완성하였다. Biosurfactant의 생성은 96시간에 최대를 나타냈으며 이때 배지의 표면장력은 초기값의 약 43% 값을 나타냈다. 한편 배양온도 및 pH는 biosurfactant생산에 크게 영향을 주지 않았으며 pH5.0~8.0범위에서 대체적으로 안정한 생성을 유지하였다. 최적조건에서 배양시 crude biosurfactant 수율은 6 g/L를 얻을수 있다.

Keywords

References

  1. Lim KH. 1996. Biosurfactants: their structures, properties, and applications. J Korean Oil Chemist's Soc 13: 1-20
  2. Bognolo G. 1999. Biosurfactants as emulsifying agents for hydrocarbons. Colloids surfaces A: Physicochem Eng Aspects 152: 41-52 https://doi.org/10.1016/S0927-7757(98)00684-0
  3. Pandey A, Selvakumar P, Soccol CR, Soccol VT, Krieger N, Fontana JD. 1999. Recent developments in microbial inulinases-its production, properties and industrial applications. Appl Biochem Biotechnol 81: 35-52 https://doi.org/10.1385/ABAB:81:1:35
  4. Ohno A, Ano T, Shoda M. 1995. Effect of temperature on production of lipopeptide antibiotics Iturin A and surfactin by a dual producer, Bacillus subtillus RB14, in solidstate fermentation. J Fermentation Bioeng 80: 517-519 https://doi.org/10.1016/0922-338X(96)80930-5
  5. Nakayama S, Takahashi S, Hirai M, Shoda M. 1997. Isolation of new variants of surfactin by a recombinant Bacillus subtillis. Appl Microbiol Biotechnol 48: 80-82 https://doi.org/10.1007/s002530051018
  6. Razafindralambo H, Hbid MP, Destain PJJ, Thonart P. 1993. Purification of antifungal lipopeptidase by reversed-phase high-performance liquid chromatography. J Chromatography A 639: 81-85 https://doi.org/10.1016/0021-9673(93)83091-6
  7. Thimon L, Peypox F, Wallach J, Michel G. 1993. Ionophorus and sequestering properties of surfactin, a biosurfactant from Bacillus subtillis. Colloids and Surface B: Biointerfaces 1: 57-62 https://doi.org/10.1016/0927-7765(93)80018-T
  8. Kluge B, Vater J, Salnikow J, Eckart K. 1988. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtillis ATCC 21332. FEBS Letters 231: 107-110 https://doi.org/10.1016/0014-5793(88)80712-9
  9. Malabarba A, Ciabatti R, Kettenring J. 1996. Structural modifications of the active site in teicoplanin and related glucopeptides. 1. Reductive hydrolysis of the 1,2 and 2,3 peptide bonds. J Organic Chemistry 61: 2137-2150 https://doi.org/10.1021/jo941809v
  10. Oren Z, Shai Y. 1997. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin : structure function study. Biochemistry 36: 1826-1835 https://doi.org/10.1021/bi962507l
  11. Angelica B, Schmauder HP. 1999. Lipophilic compounds in biotecnology-interactions with cells and technological problems. J Biotechnol 67: 13-32 https://doi.org/10.1016/S0168-1656(98)00139-4
  12. Fox SL, Bala GA. 2000. Production of surfactant from Bacillus subtillis ATCC 21332 using potato substrates. Bioresouce Technology 75: 235-241 https://doi.org/10.1016/S0960-8524(00)00059-6
  13. Jung HK, Lee JB, Yim GB, Kim EK. 1995. Properties of microbial surfactant S-acid. Korean J Biotechnol Bioeng 10: 71-77
  14. Youn HK. 2000. Antimicrobial activity of viscous substance from chongkukjang fermented with different Bacillus spp. MS Thesis. Inje Univ
  15. Champion JT, Gilkey JC, Lamparski H. 1995. Electron microscopy of rhamnolipid (biosurfactant) morphology-Effects of pH, cadmium, and octadecne, source. J Colloid & Interface Science 170: 569-574 https://doi.org/10.1006/jcis.1995.1136
  16. Kim SH, Lim EJ, Lee TH. 1998. Optimization of culture condition of Nocardia sp. L-417 strain for biosurfactant production. J Korean Soc Food Sci Nutr 27: 252-258
  17. Lee MH. 1999. Antimicrobial activity of Korean leek (Allium tuberosum) and its application to food system. MS Thesis. Inje Univ

Cited by

  1. Optimization of Medium Components for the Production of Crude Biosurfactant by Bacillus subtilis JK-1 vol.54, pp.1, 2011, https://doi.org/10.3839/jabc.2011.002
  2. Optimization of culture conditions for the production of biosurfactant by Bacillus subtilis JK-1 using response surface methodology vol.56, pp.3, 2013, https://doi.org/10.1007/s13765-013-3044-6
  3. Characteristics of Culture Conditions for the Production of Biosurfactant by Bacillus pumilus IJ-1 vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.014
  4. Isolation and characterization of a biosurfactant-producing bacterium Bacillus pumilus IJ-1 from contaminated crude oil collected in Taean, Korea vol.57, pp.1, 2014, https://doi.org/10.1007/s13765-013-4236-9
  5. Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation vol.48, pp.1, 2002, https://doi.org/10.4014/mbl.1908.08001