DOI QR코드

DOI QR Code

Study on the Improvement of Exchange Bias and Magnetoresistance in Co/Cu/Co/FeMn Spin Valve by Heat Treatment

Co/Cu/Co/FeMn 스핀밸브의 자기저항 특성 향상 연구

  • 김홍진 (한국과학기술원 재료공학과) ;
  • 배준수 (한국과학기술원 재료공학과) ;
  • 노은선 (한국과학기술원 재료공학과) ;
  • 이택동 (한국과학기술원 재료공학과) ;
  • 이혁모 (한국과학기술원 재료공학과)
  • Published : 2002.02.01

Abstract

It was observed that exchange bias field was increased with smooth surface and better ${\gamma}$-FeMn formation. Sputtering conditions were varied for the control of the surface roughness and ${\gamma}$-FeMn formation. From the results of Cu deposition as underlayer, it was found that ${\gamma}$-FeMn formation was closely related with the thickness of underlayer. After heat treatment, exchange bias field was increased over three times. This improvement was likely that the crystallites of ${\gamma}$-FeMn were well formed. In Co/Cu/Co/FeMn spin valve structure, magnetoresistance was increased over 1.4 times through the heat treatment. This was due to the disappearance of Co/Cu intermixed dead layer and removal of defect, and this was examined by AES analysis.

반강자성 FeMn과 강자성 Co를 이용한 기판/Co/Cu/Co/FeMn 구조의 스핀밸브를 제조하여 자기저항 특성을 조사하였다. Cu를 하지층으로 하여 FeMn 반강자성층을 형성시킨 결과 ${\gamma}$y-FeMn과 고착층 Co와의 교환이방성 결합이 향상되었다. FeMn증착시 Ar 압력과 power를 달리해가며 최적의 FeMn 증착조건을 고찰하였다. 이로부터 FeMn과 Co간의 계면이 평탄해질수록 교환결합의 세기가 증가함을 알 수 있었다. AES 분석으로부터 열처리에 의해 Co와 Cu간 계면고용층이 소멸됨을 확인하였다. 기판/Co/Cu/Co/FeMn 스핀밸브를 열처리함으로써 교환이방성 결합과 자기저항비를 각각 3배와 1.4배 이상 향상시켰다.

Keywords

References

  1. J. Magn. Magn. Mater. v.138 B. Dieny
  2. Thin Solid Film. v.216 J. M. Daughton https://doi.org/10.1016/0040-6090(92)90888-I
  3. IEEE Trans. Mag. v.29 J. M. Daughton;Y. J. Chen https://doi.org/10.1109/20.280936
  4. J. Appl. Phys. v.69 B. Dieny;V. S. Speriosu;S. Metin;S.S. Parkin;B.A. Gurney;P. Baumgart;D. R. Wilhoit https://doi.org/10.1063/1.348252
  5. Appl. Phys. Lett. v.65 Th. G. S. M. Rijks;W. J. M. De Jonge;W. Folkerts;J. C. S. Kools;R. Chehoom https://doi.org/10.1063/1.112202
  6. J. Magn. Magn. Mater H. J. Kim;J. S. Bae;T. D. Lee;H. M. Lee
  7. Phys. Rev. B v.58 E. Yu. Tsymbal;D. G. Pettifor https://doi.org/10.1103/PhysRevB.58.432
  8. Jpn. J. Appl. Phys. v.33 R. Nakatani;K. Hoshino;S. Noguchi;Y. Sugita https://doi.org/10.1143/JJAP.33.133
  9. IEEE Trans. Magn. v.32 J. C. S. Kools https://doi.org/10.1109/20.508381
  10. Binary Alloy Phase Diagrams(2nd ed.) T.B. Massalski
  11. Phys. Rev. Lett. v.71 S. S. P. Parkin https://doi.org/10.1103/PhysRevLett.71.1641