DOI QR코드

DOI QR Code

Abnormal Temperature Dependence of Tunneling Magnetoresistance for Magnetic Tunnel Junctions

  • Lee, K.I. (Korea Institute of Science and Technology) ;
  • Lee, J.H. (Korea Institute of Science and Technology) ;
  • Lee, W.Y. (Korea Institute of Science and Technology) ;
  • Rhie, K. (Dept. of Physics, Korea University) ;
  • Lee, B.C. (Dept. of Physics, Inha university) ;
  • Shin, K.H. (Korea Institute of Science and Technology)
  • Published : 2002.06.01

Abstract

Magnetic tunnel junctions (MTJs) were fabricated with high bias for plasma oxidation and the effects of annealing on the temperature dependence of tunneling magnetoresistance (TMR) were investigated experimentally. As-grown, TMR increases, peaks around 160 K, and decreases with increasing temperature from 80 K to 300 K. When MTJs are annealed, $T_{max}$, the temperature at which maximum TMR is obtained, decreases as annealing temperature increases to the optimal point. In order to explain this abnormal temperature dependence of TMR, the difference of conductance between parallel and antiparallel alignments of magnetizations as a function of temperature is also analyzed. The shifts of $T_{max}$ due to annealing process are described phenomenologically with spin-dependent transfer rates of electrons tunnel through the barrier.

Keywords

References

  1. Phys. Rev. Lett v.74 no.3273 Phys. Rev. Lett J. S. Moodera;L. R. Kinder;T. M. Wong;R. Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  2. J. Appl. Phys v.81 no.5521 J. Appl. Phys S. S. P. Parkin;R. E. Fontana;A. C. Marley https://doi.org/10.1063/1.364588
  3. J. Appl. Phys v.83 no.6688 J. Appl. Phys M. Tondra;J. M. Daughton;D.Wnag;R. S. Beech;A. Fink;J. A. Taylor https://doi.org/10.1063/1.367861
  4. Science v.282 no.85 Science R. J. Soulen Jr;J. M. Byers;M. S. Osofsky;B. Nadgorny;T. Ambrose;S. F. Cheng;P. R. Broussard;C. T. Tanaka;J. Nowak;J. S. Moodera;A. Barry;J. M. Coey https://doi.org/10.1126/science.282.5386.85
  5. Phys. Rev. lett v.54 no.225 Phys. Rev. lett M. Julliere
  6. Appl. Phys. Lett. v.73 no.3288 Appl. Phys. Lett. R. C. Sousa;J. J. Sun;V. Soares;P. P. Freitas;A. Kling;M. F. da Silva;J. C. Soares https://doi.org/10.1063/1.122747
  7. Appl. Phys. Lett. v.75 no.543 Appl. Phys. Lett. S. S. P. Parkin;K. -S. Moon;K. E. Pettit;D. J. Smith;R. E. Dunin-Borkowski;M. R. McCartney https://doi.org/10.1063/1.124416
  8. Appl. Phys. Lett v.76 no.610 Appl. Phys. Lett S. Cardoso;P. P. Freitas;C. de Jesus;P. Wei;J. C. Soares https://doi.org/10.1063/1.125833
  9. Appl. Phys. Lett. v.76 no.3097 Appl. Phys. Lett. M. G. Samant;J. Luning;J. Stohr;S. S. P. Parkin https://doi.org/10.1063/1.126535
  10. Phys. Rev v.58 Phys. Rev C. H. Shang;J. Norwak;R. Jansen;J. S. Moodera https://doi.org/10.1103/PhysRevB.58.R2917
  11. Phys. Rev. Lett. v.81 no.705 Phys. Rev. Lett. A. H. MacDonald;T. Jungwirth;M. Kanser https://doi.org/10.1103/PhysRevLett.81.705
  12. J. Appl. Phys v.83 no.6512 J. Appl. Phys J. Zhang;R. M. White https://doi.org/10.1063/1.367644
  13. Appl. Phys. Lett. v.77 no.283 Appl. Phys. Lett. X. F. Han;M. Oogane;H. Kubota;Y. Ando;T. Miyazaki https://doi.org/10.1063/1.126951
  14. For nstance v.77 no.283 MTJs plasma oxidized at 50 watt do not exhibit any unique features https://doi.org/10.1063/1.367813
  15. J. Appl Phys. v.83 no.6515 J. Appl Phys. Y. Lu;X. W. Li;G. Xiao;R. A. Altman;W. J. Gallagher;A. Marley;K. Roche;S. S. P. Parkin