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An Input Domain-Based Software Reliability Growth Model In
Imperfect Debugging Environment

Joong-Yang Park' - Young-Soon Kim'" - Yang-Sook Hwang'

ABSTRACT

Park, Seo and Kim [12] developed the input domain-based SRGM, which was able to quantitatively assess the reliability of a software system
during the testing and operational phases. They assumed perfect debugging during testing and debugging phase. To make this input domain-based
SRGM more realistic, this assumption should be relaxed. In this paper we generalize the input domain-based SRGM under imperfect debugging.
Then its statistical characteristics are investigated.

7I19E : =AY (Input Domain), 2ZEHH MEY M DH(Software Reliability Growth Model), 228 CItHZ (Imperfect Debug-

ging) Cke X (Multinomial Distribution), Zf =8 (Maximum Likelihood Method), &% 8 (Mathematical Indunction)

1. Introductions

In order to evaluate a software system, there are many
attributes of software quality. Software reliability, however,
is generally accepted as the key factor in software quality
since it quantifies software failures. Software reliability has
been defined as the probability that no failure occurs in a
specified environment during a specified exposure period.
The time unit of exposure period depends on the type of
reliability model used. For the evaluation of the reliability
of a software system during the testing and operational
phases, many software reliability growth models (SRGMs)
have been proposed in the literature. See the review papers
such as Brown and Lipow [1], Duran and Ntafos [6], Goel[7],
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MacWilliams [9], Nelson [11], Ramamoorthy and Bastani
[16] and Weiss and Weyuker [17], etc. The SRGMs are usu-
ally used to estimate the number of remaining faults, soft—
ware reliability and other software quality assessment mea-—
sures. Park, Lee and Park [13, 14] recently suggested several
neural network models for predicting software reliability.
Most of software reliability growth models (SRGMs) have
been developed for evaluating software reliability growth
behavior by analyzing the failure data obtained during test—
ing software systems. Several researches [2, 4, 5, 8] indicate
drawbacks of SRGMs : The usual assumptions made for
SRGMs are still questionable ; SRGMs do not sufficiently
account for the characteristics of the software systems under
testing ; SRGMs do not work well for the software systems
which rarely fail during testing. This problem can be over-
come by considering the input domain-based models which

do not require assumptions on the software failure and cor-
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rection processes. The input domain-based models usually
classify into the class of reliability models for the validation
phase. However, the input domain-based models can also
be applied in the testing and debugging phase by treating
the software system after each fault correction as a new
software system.

Input domain-based models generally require large num-
ber of test inputs for obtaining accurate reliability estimates.
Several studies have been proposed a method of reduction
the number of required test inputs by taking advantage of
information obtained previously. For example, Podgurski and
Weyuker [15] and Dasu and Weyuker [3] proposed economi-
cal approaches for estimating reliabilities of successive soft-
ware versions resulting from the maintenance of software.
They proposed a heuristic algorithm for updating the previ-
ous estimate of reliability. Providing the heuristic of Podgurski
and Weyuker [15] with statistical justification, Park, Seo and
Kim [12] suggested an input domain-based SRGM, which
did not require assumptions about software development and
usage environment. And it described the reliability growth
behavior of a software system, is based on a multistage test—
ing procedure, in which fault corrections occur after each
stage and two software systems, the software system before
fault correction and the software system after fault correc—
tions, are tested at each stage. But Park, et al [12] developed
input domain—based SRGM under perfect debugging. It is
necessary to develop input domain-based SRGM which as—
sume imperfect debugging because the faults detected by
testing are not always corrected/removed. Section 2 presents
assumptions and testing procedure. The input domain-based
SRGM under perfect debugging is briefly described in Section
3. In Section 4, we generalize the input domain~based SRGM
underlying imperfect debugging and investigate its statistical

characteristics.

2. Assumptions and Testing Procedure

Park, Seo and Kim [12] developed the input domain based
SRGM under the following assumptions :

(1) Input domain of the software system is defined and
will not change.

(2) Test inputs are randomly selected from operational
profile, which will not change.

(3) Debugging is perfect.

(4) The cost of executing test inputs is small relative to

the cost of checking whether an execution conforms
to requirements.
(5) Reliability is a function of the number of remaining

faults.

We will adopt these assumptions except for assumption
(3) and change it into imperfect debugging. Next we consider
the testing procedure. A test run is an execution of the soft—
ware system by applying an input selected according to the
given testing profile. The term “test stage” refers to some
predetermined number of consecutive test runs. The testing
is performed stage by stage. If failures occur during a testing
stage, testing will not be interrupted for fault corrections.
Fault corrections occur at the end of each testing stage. We
denote by P;the software system after fault corrections of

(i—1) st testing stage (equivalently at the beginning of i th
testing stage). The failure probability of P; is denoted by

6;. Moreover we denote the number of test inputs for ith
testing stage by #;. The existing input domain-based relia-
bility models treat the software system after each test stage
as a new software system. Thus we estimate 8; from the
failure data obtained during 7th testing stage. Two software
systems P;_; and P; are identical except for the part
debugged after (i—1) st testing stage. The debugged part
is likely to be a small portion of the software system. This
implies that the failure data obtained before ¢ th testing stage

contains information on the undebugged part of P;. It is thus
desirable to develop a testing procedure through which rela-
tionship among 8;’s can be derived. We thus propose the
testing procedure in which #; test inputs are applied to both
P;_, and P; for i=2. One exception is that only P; is

executed at 1st testing stage.

3. Review Of Input Domain-Based SRGM

By considering testing procedure suggested in Section 2,
Park, et al [12] proposed the following formulation of the
problem. Execution of each input in 1st testing stage results
in one of the two outcomes, success (S) and failure (F).
The number of failures occurred in 1st testing stage be de-

noted by x.-. In case of ith testing stage, both P,_; an

P; be exercised, for = 2, each test run results in one of
the five outcomes, SS, SF, FS, FFD and FFS of which

brief descriptions are presented in <Table 1>.
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(Table 1> Brief descriptions of outcomes of each test run

outcome description

SS both P;_, and P; succeed

SF P;_; succeeds and P; fails

FS P;_, fails and P; succeeds

FFD P;_, and P; both fail and produce different outputs
FFS P;_; and P; both fail and produce same outputs

They denoted the number of test runs and the occurrence

probability corresponding to each outcome by x;outcome and
D ioucome. Then x 1 follows a binomial distribution with pa-
rameters »; and 6, and the joint distribution of x;ss, % isr,
% ;rs, % iprp and x ;pps for > 2 be multinomial distribution.
But under the perfect debugging, only three outcomes, SS,
FS and FFS, can occur. Thus the joint distribution of x;gs,
xims and x;zps are given by

X iss XiFS X iFFS

DissDiFsD iFFs,

oy

n;
F(%iss, % ips, % ipps) =
o TS X isSs % iFs. X iFFs

where x ;55 % ipst % iprs = n; and pisst P ipst P irrs=1.In
order to represent Expression (1) in terms of 8,’s, Park, et

al [12] defined 8;’s to be

8;-y = Pr(P;_, fails)
= Pr(P;_, fails and P; succeeds)
+ Pr(P;.; and P; both fail)
= Pr(P;_, fails and P; succeeds)
+ Pr(P;_, and P; both fail and produce same outputs)
+ Pr(P;_yand P; both fail and produce different
outputs)

()

= Pirst Dirrs T Dirrp
and

. = Pr(P; fails)
= Pr(P;_, succeeds and P; fails)
+ Pr(P,—, and P; both fail)
= Pr(P;_, succeeds and P; fails)
+ Pr(P,;_, and P; both fail and produce same outputs)
+ Pr(P;_, and P; bloth fail and produce different
outputs)

= pirst Dirrs+ P irrp. 3)

Since pisr = pirp = 0 under the perfect debugging as-
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sumption, Expressions (2) and (3) are simplified to 4;,_,=
pirst pirrs and ;= pprs. The probabilities p ;s and
»:rrs are then expressed as pips=06;-1—6; and pprs=
1 — piss— 8;_1 + 6;. Substituting these into Expression (1),
the joint distribution of x;55, x;rs and x;zrs can be re-

written as

X iss

P50, — 0"

nl
F(xiss, X ips, % ipps) =
ey ey X ;55 X iFS» X iFFS

(1= piss— iy +6:)".
@

By maximum likelihood method, @, be x,/n;, for i=1.

If i=2, then

X1F

X kFS

. 5)
k=2

ny [

@,- is an unbiased for #; and the variance of this estimator

is given by :

(8;i-1— 6: X1~ 61+ 6;)
n;
(0j-1—0)1—6;-,+6)

nj

Var ( @i) = Var ( @;_1)+

1
n

Il

61—+ 2
i=2

Thus 4, is a consistent estimator of 6; and it is clear
that failure probability after fault corrections has a larger
variance than previous estimator. In next section, we pro-

pose an estimator under imperfect debugging.

4. Generalization of Input Domain-Based SRGM

We propose a more realistic and general estimator for
8; within the same framework and constraints except for
the perfect debugging discussed in the previous section. The
detected faults by debugging are not always corrected/re—
moved. And once a failure occurs, the corresponding fault
corrections may introduce new faults. Thus we assume the
imperfect debugging. Under this assumption, the joint dis-
tribution of xiss, xisF, X irs, % irpp aNd x ;prs 1S given by

the following multinomial distribution :

(% iss, % isFy % iFs, X iFFDs X iFFS)

(»

X isS 4 X iSF 4 X iFs
Dissp ispb irsh

6)

nl
i8S» X iSF» X iFS» X iFFD» X iFFS

X iFFD X iFFS

i{FFDD iFFS s
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where

n 1
X iSSs X iSF» X iFS» X iFFDs X iFFS

n;!

% iss 1% isr 1% ips! % irrp! X iprs!

xiss+ % isp+ xips+ xiprp + Ziprs = n; and pissT P iset
P rs+ birrp+ b irrs = 1. In expression (2) and (3), the prob-
abilities p;rs and p ;zrs are then expressed as pips= ;-1 —
0:+pisr and pirs = 1—piss— Oi-1 + 0: = 2D 25Fr — P2rrp-
For representing Expression (6) in terms of 8;'s, substi-

tuting these into Expression (6). Then the joint distribution

Of X iss, XiSF, X iFs, X iFFD and X iprs Can be rewritten as

(X iss. X isp, X iFs, ¥ ipFDy X iFFS)

— nl
X i3Sy X iSF> X iFS» X iFFD» X iFFS
X iFs
DR (01— it Disr)

pimm (1= iss— i1+ 0:= 20 isp— D iprp )™

After completing ¢ testing stage, we have to estimate par—-
ameters 8;, piss, d;sr and pipp for j<i, among which the
most interesting parameter is ;. The maximum likelihood

estimates (MLEs) of the parameters will be derived in this

paper by maximizing the likelihood function L given as

(;") 05 (1= 0) ™™™, for i=1
1

(2)orra-eom 11

nl
j=2 \ X jSS» X jSFs X jFS» X jFFDs X jFFS

it (0;m— 6+ p i)

b (1= piss— -1+ 0;,— 2 ;50 — Dsrrn ).

MLEs are usually obtained by maximizing the log like-
lihood function In L with respect to 8;, p;ss, pjsr and
0 ;rrp for j< i For the case where =1, it can be easily
shown that ,=x;r/n,. If i>=2, we have to estimate 6,
Diss, pise and pjeep for j<i. Let us denote MLEs of 4,
biss, bise and p ;eep Obtained after i th stage by ;5 5 jss.s

? jsr.¢ and ? ;erp. Accordingly 8, =217 /n, Obtained after
1st stage is denoted by i 1.1 . We will show by mathematical

induction that

~ ~

G;:= 6, (i—1), bpjssi= Diss-v Disri= D jisr.G-1
and p jrrp,i = 2 jeepG-p for j< (i=1),
~ X1F : Xjsp Xips | o~ X iss
0= + 2 — |, bissi= —,
n; n; »n;
~ X iSF ~ XiFFD
Disri =" and P iprp, = n
n; i

When i= 2, the likelihood equations are obtained as

dlnL _ Xir 1T XF XoFs
a6, 0, 1-6, 0, — 0y + Dasr

X2FFS
1 — pass — 61 + 6y — 2Pasr — borrp

dlnL Xass
dbass Dass
X2FFS -0
1— pass— 61 + 03 — 2basr — Darrp
dlnL  ZXasF Xars
Obask Dasr 0, — 0y + Dosr
22357 -0
1 — pass — 61 + 0 — 2Dasr — Dorrp
dinl  XFFp
Oborrp D2rFD
X2FFS -0
1 — pass — 61 + 8y — 2D35r — borrp
dlnL - _ X2FS
06, 6, — 02 + Dasr
x
2FFS -0,

+
1— poss — 01 + 03 — 2basr — borrp
(8)

Substituting dinL/ 88, =0 into dlnL/36, = 0, the dlnL/
86, = 0 becomes the same with dinL/36;= 0 for 1 st stage.
Solving dInL/dpsss =0, dInL/8pesr =0, dInL/0p3rrp =
0 and 9InL/36, =0 simultaneously with 6, replaced by
/631,1, we can verify that dInL/dpyss = 0 and dlnL/ 38, =0
hold only when 6, = %, F/ ny +xosp/ny— x3ps/ 02, Pasr=

xZSF/nzsp and Doss= xZSS/nz. Therefore

~ ~ ~ X1F X 2SF X 2FS
G12= 011, 022= + - ,
71 n3 n3
~ X25s ~ X 25F ~ X 2FFD
bass 2= y  DasFr2= and P 2rrp2=
1] 2 ny

are the unique solution of the likelihood equations (8), i.e.,
MLEs of 6y, 03, Dass, Dasr and DorrD. This is the desired
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result. The likelihood equations for (i—1)st stage are given dInL X (i-1)8S
by 9b(i-1)ss Di-vss
_ X (i— 1)FFS _
dnL X mTx Xops 1= pei-nss = O- + OG-n—20G-sF ~ Pli-nEr
26, 6 1-6, 0, — 63+ Dasr
’ X2FFS -0 dlnL _ _Xu-vsF X (i-1FS
1—poss— 61+ 8o— 2basr — Darrn 3D (i-1sr pi-psr G-~ 0u-ntPu-nse
' _ 2% (i 1)FFs .
dlnL X2ss XorFs 1=p-nss— O-t+ Ou-1— 20 G-1)sF — PG—DFFD
dbass Dass 1—poss— 61+ 02— 2Do5r— Parrp ' _
JlnL _ X(i-DFFD
olnL XosF Xors 0P (i~ VFFD b i-1)FFD
dtosr  Dasr 01— 02+ posr _ X i-DFFs =0
2%ypps 1= pu-nss— Ou-t 0i-n~ 2P Gi-nsk — Pli-rFp
1= poss— 601+ 02— 2Dasr — 2rrp B
omL X (i—-1)FS
dInL %o Korrs 0 86—y 8-~ Ou-ntPi-vsr
Obarrp porrp 1~ Pass— 61+ 02— 20255~ Porrp i ¥ (i-1FFs —0
1=pG-nss— OG-+ 04—~ 2DG-nsk — Di-n FFD
dlmL _ XoFs 9
a0, 01— 0yt basr . . -
Xoprs Suppose that the unique solution for the above likelihood
1= poss— 61+ 02— 2p35r — Dorrp equations is given by
+ 6 — :‘yjﬁ ~ ~ ~ ~ ~
2 TaT AesE Oii-1y = OG-, Pissi-p = bissc-2, Disri-1) =
X3FFS _ :
1= pyss— 02+ 03— 23sr — Psrr 5;‘51‘,(:‘—2) and 2 ;rrp,(i-= P jrrp,G-n for j< (i—2) and
. ~ X1F 2l xisr X jFs
j=2. 6 (i-v.G-p = + 2 ( e ),
n1 j=2 n; n;
. ~ X (i-1)SS  ~ X (i-1) SF
dlnL _  Xu-2ss b -pssu-0= T s P G-psRG-n= T and
b (i—9)ss D (i-9ss i-1 i
X (-
- U-D S = ~ X (i~1) FFD
1=pi-nss— Ou-n+ -~ 20 i-vsF — Pu-2rFrm D G-vFFDti-n = T
X (i— X(i— . . . - .
OInL _ Firdsr + T DFS that is, Expression (7) holds. Next consider the likelihood
- Pa-asr Gy = Ou-nt biu-osr . _ . . I
2% (i-2)FFs equations for ith stage, which consist of the likelihood e~
1~ pi-nss— Oui-3+ Oi-— 2D (i—)sFr — D(i-2)FFD B quations for (i—1) st stage with one modification and the
following four additional equations.
dlnL __XG-2FFD
0bi- T b
(- DEFD U-DFED x dinlL X iss X {FFS 0
(i—2)FFS = - =
=0 dp iss biss 1=biss—0u-ntT8i—20isr —Dirrp
1= pG-oss— Ou—nt+ OG-~ 2D(i-2sF — PGi—DFFD !
dlnL X X iFs
dlnL _ X (i-2)Fs 0p isF Disk Ou-n—0; +Disr
36 i-» 09— Oyt Dii2)sr 2 irrs 3
X (i~ DFFS 1=piss— 0u—1y+ 0i— 2D isr — D irrp
1= p-2ss— O-n+ Oi-2— 20 (i-2sF — Di-2FFD
X (i—1)FS dlnL  XiFFD
O—— Ou—pTt bi-nsF 9p irrp b irFD
X (i—1)FFS X iFFS

1=pa-nss— 8-+ Oi—» — 20— sk — Pi—DFFD 1=piss— 8-+ 0= 20 ;57 — P irrp
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dlnL - _ X irs
a6; Ou-ny—8: sk
X iFFS

+ =0
1=piss— 0u-n+6; ~2pisP— D irFp

(10)
One modification is that dlnL/ 96;—, = 0 for (i—1) st
stage is changed to

oL (x-pry)
961 G- = O0i-pT Pu-nsr
+ X (i-1)FFS
1= pi-nss— Oi-n+ 8-~ 20 - nsF — b i—nrep
+ X iFs
Ou-y—0: +bisk
X iFFS

T 1= puss— Ou-n+ 0 —2b 5 — Dirmp

However, if we substitute dInL/38;,=0 into JlnL/
36;,_, =0, dlnL/a8;_, = 0 for ith stage becomes identical
to dlnL/d6,_; =0 for (i—1)st stage. Therefore the like-
lihood equations for ith stage are composed of the likelihood

equations for (i—1)st stage and four additional equations

~

given by Equations (10). Letting 8,;= 81, Djss:=

~

D jss,(i-1)» Z SF. 1= B JSFs (i—Dand ziFFD,x’ = ./5 FFFD,(i—1)
for j<(i—1) and substituting them into Equations (10), it
is easily shown that Equations (10) are satisfied only when

piss=XissIni, bisr= xisplni, Pirrp= % ;rrp/n; and 6;=
(mp/m)+ Zz(x,-sp/n,-—x,»ps/nj). Therefore, the esti-
=

mates given in Expression (7) are the unique solution of the
likelihood equations for sth stage. Now proof is completed.

One noteworthy point is that the estimates obtained in the
previous stages do not change as the testing proceeds. Thus

we can simply rename 6, 9 ssi, P jsriand p jerp,; aS

8;, bjiss, pjisrand prep Where 6, = xip/ny, 6; =
i —— ——
mel mt+ kzz(xksp-/nk—xkps/nk), Diss = Nss/ #;, Disp =

nisr/ n; and b jerp = 7 ;pep [ »;. We can further derive a

useful relationship
X iSF __x

— _ IS for 22, 11)
n; n;

R
|
)

i—1

which enables us to obtain the new estimate of the failure

probability by updating the estimate obtained in the previous

testing stage. In order to characterize MLEs statistically, we

compute the expected value and variance of ﬁi. Since

oo B (5-)

1
—n b+ 2( n; b isr—

E(8))

1
. "ib;'ps)

7

E( w )t BT w
n =2 n; nj

= 6,+ I_z=:2 (pjsr— b jFs)

= 01+ E :Z(p,-sp—(f),-_l—ﬁ,--i-j),—sp ))
i=
= 0;.

@, is an unbiased estimator for 6;. And the variance of

this estimate is given by

+ V(x,;ps)—2COV (x5, % jps)) 13)

i

1 1
=—6,(1-6)+ 2 — (nipjse(1=pjsr)

n i=2 nj
+ n;pirs(l—Drs )+ 20, D sk D jrs)

i 2pisp+ (61— 0, X1—0,_1+6;)
=_101(1_01)+ 2 iSF -1 i -1 f ,

7y j=2 nj

and

20 st (01— 01— 6,1+ 6))

n;

Var( @i)= Var ( T9,<_l)+

Thus

/\/\

Var( ?,»)= Var ( 0, +H2—

X iSF
n; (14)

(xisr — xips) (9, — %55+ % irs)

n}

An estimate of Var( @) is obtained by substituting 8,/s

in Expression (13) with 9, Thus &; is a consistent esti-

mator of 6; as =; tend to infinity. Similarly we can show
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that 7 iss, isr and b irrp are also unbiased for p;ss, #isr
and 2 ;mrp and those variances are p;ss(1—piss) / #ni, bisk

(1—pisp)/n; and p ;ppp (1 — P rrp) / m,, respectively.

5. Conclusion

Debugging actions in real testing and operation environ—
ments are not always performed perfectly. For that reason,
we have extended an input domain-based SRGM under im-
perfect debugging. We can construct an consistent and unbi-
ased estimator that can usefully apply to real software test-
ing. However, its practicability should be validated and ex-
amined through applying to real software testing. Further-
more, since the multi-stage testing procedure requires more
testing time, the trade-off between testing time and number
of reguired inputs should be investigated in order to deter-

mine the time to stop testing.
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