DOI QR코드

DOI QR Code

Study on Local Thermal Equilibrium in a Porous Medium

다공성 매질에서 Local Thermal Equilibrium에 관한 연구

  • Published : 2002.08.01

Abstract

In the present study a general criterion for local thermal equilibrium is presented in terms of parameters of engineering importance which include the Darcy number, the effective Prandtl number of fluid, and the Reynolds number. For this, an order of magnitude analysis is performed for the case when the effect of convection heat transfer is dominant in a porous structure. The criterion proposed in this study is more general than the previous criterion suggested by Carbonell and Whitaker, because the latter is applicable only when conduction is the dominant heat transfer mode in a porous medium while the former can be applied even when convection heat transfer prevails. In order to check the validity of the proposed criterion for local thermal equilibrium, the forced convection phenomena in a porous medium with a microchanneled structure subject to an impinging jet are studied using a similarity transformation. The proposed criterion is also validated with the existing experimental and numerical results for convection heat transfer in various porous materials that include some of the parameters used in the criterion such as a microchannel heat sink with a parallel flow, a packed bed, a cellular ceramic, and a sintered metal. It is shown that the criterion presented in this work well-predicts the validity of the assumption of local thermal equilibrium in a porous medium.

Keywords

References

  1. Bejan , A., 2000, 'Editorial', Journal of Porous Media, Vol. 1, pp.I-ii
  2. Koh, J. C. Y., Colony, R., 1986, 'Heat Transfer of Microstructure for Integrated Circuits,' Int. Comm. Heat Mass Transfer, Vol.13, pp.89-98 https://doi.org/10.1016/0735-1933(86)90075-8
  3. Kim, S. J., Kim, D., 1999, 'Forced Convection in Microstructure for Electronic Equipment Cooling,' ASMEJ. Heat Transfer, Vol. 121, pp.635-645
  4. Kim, S. J., Kim, D. and Lee, D.Y, 2000, 'On the Local Thermal Equilibrium in MicroChannel Heat Sink,' Int. J. Heat Mass Transfer, Vol. 43, pp.735-1748 https://doi.org/10.1016/S0017-9310(99)00259-8
  5. Byun, S-Y, Lee, D-Y and Ro, S. T, Transient Heat Transfer in Porous Media under Oscillating Flow Condition,' Transactions of the KSME, B, Vol. 25, pp.422-432
  6. Carbonell, R. G., Whitaker, S., 1984, Heat and Mass Transfer in Porous Media, Fundamentals of Transport Phenomena in Porous Media, Bear and Corapciglu, ed. Martinus Nijhoff,pp. 121-198
  7. Whitaker , S., 1991, 'Improved Constraints for the Principle of Local Thermal Equilibrium,' Ind. Eng. Chem. Res., Vol. 30, pp.983-997 https://doi.org/10.1021/ie00053a022
  8. Quintard, M., Whitaker, S., 1995, 'Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison with Numerical Experiments,' Int. J. Heat Mass Transfer, Vol.38, pp.2779-2796 https://doi.org/10.1016/0017-9310(95)00028-8
  9. Quintard, M., Whitaker, S., 2000, Theoretical Modeling of Transport in Porous Media in Handbook of Heat Transfer in Porous Media Edited by K. Vafai, First ed., Inc, New York., M. Decker, Chapter 1.
  10. Vafai, K., Amiri, A., 1998, Non-darcian Effects in Confined Forced Convective Flows in Transport Phenomena in Porous Media Edited by B. Ingham, First ed., Elsevier Science Ltd., pp.313-329
  11. Amiri, A., Vafai, K., 1994, 'Analysis of Dispersion Effects and Non-thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow through Porous Media,' Int. J. Heat Mass Transfer, Vol. 30, pp.939-954
  12. Nield, D. A., 1998, 'Effects of Local Thermal Non-equilibrium in Steady Convective Processes in a Saturated Porous Medium: Forced Convection in a Channel,' J. Porous Media, Vol. l, pp.181-186
  13. Nield, D. A., Kuznetsov, A. V, 1999, 'Local Thermal Nonequilibrium Effects in Forced Convection in a Porous Medium Channel: a Conjugate Problem,' Int. J. Heat Mass Transfer, Vol. 42, pp.3245-3252 https://doi.org/10.1016/S0017-9310(98)00386-X
  14. Lee, D.Y, Vafai, K., 1999, 'Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media,' Int. J. Heat Mass Transfer, Vol. 42, pp.423-435 https://doi.org/10.1016/S0017-9310(98)00185-9
  15. Kaviany, M., 1995, Principles of heat transfer in porous media, second ed., Springer, Chapter3
  16. White, F. M., 1991, Viscous fluid flow, Second ed., McGraw-Hill, Chapter3
  17. Wakao, N., Kaguei, S. and Funazkri, T., 1979, 'Effect of Fluid Dispersion Coefficients on Particle-to-fluid Heat Transfer Coefficients in Packed Beds,' Chem. Engng. Sci., Vol. 34, pp.325-336 https://doi.org/10.1016/0009-2509(79)85064-2
  18. Kar, K. K., Dybbs, A., 1982, 'Internal Heat Transfer Coefficient of Porous Metals,' ASME Pro. the Winter Annual Meeting, Phoenix, Az., pp.81-91
  19. Maiorov, V, Vasiliev, L. and Polyaev, V. M., 1984, 'Porous Heat Exchangers-classification, Application,' J. Engrg. Phys., Vol.47, pp.1110-1123 https://doi.org/10.1007/BF00873730
  20. Fu, X., Viskanta, R. and Gore, J. P., 1998, 'Measurement and Correlation of Volumetric Heat Transfer Coefficients of Cellular Ceramics,' Experimental Thermal and Fluid Science, Vol. 17, pp.285-293 https://doi.org/10.1016/S0894-1777(98)10002-X