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EXPONENTIAL FAMILIES RELATED
TO CHERNOFF-TYPE INEQUALITIES

G. R. MoHTASHAMI BORZADARAN

ABSTRACT. In this paper, the characterization results related to
Chernoff-type inequalities are applied for exponential-type (contin-
uous and discrete) families. Upper variance bound is obtained here
with a slightly different technique used in Albarbi and Shanbhag [1]
and Mohtashami Borzadaran and Shanbhag [8]. Some results are
shown with assuming measures such as non-atomic measure, atomic
measure, Lebesgue measure and counting measure as special cases
of Lebesgue-Stieltjes measure. Characterization results on power
series distributions via Chernoff-type inequalities are corollaries to
our results.

1. Introduction

Characterization results related to variance bound established by
Chernoff [5] and Cacoullos and Papathanasiou [2, 3, 4]. Goldstein
and Reinert [6] and Papadatos and Papathanasiou [9] found variance
bounds via Stein identity. Alharbi and Shanbhag [1] and Mohtashami
Borzadaran and Shanbhag [8] published an extended version of Chernoff
inequality. Hudson [7] and Prakasa Rao [11] characterized the exponen-
tial families. Also, Papathanasiou [7] characterized the power series
distribution via the Chernoff-type inequality. We characterize the gen-
eralized exponential-type family by using a version of the Chernoff in-
equality. The following theorem and corrolaries lead us to versions of
the exponential families:

THEOREM 1.1. With w(z) > 0 for almost all [vp+]z € R, F is a
distribution function that absolutely continuous with respect to vy« and
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there exists a point xq such that t(z) > @ for almost all [vp«|z € R, lying
in (zg,00) and t(z) < 6 for almost all [vp<|z € R, lying in (—o0,xg)
with E(t(X)) = 0 and t(xg) > 6, where X is a random variable with
a distribution function F. Then F satisfies (10) if and only if for some
¢ € (0,00),

(1) dF(z)
Ao L, cpo (1 = mD (e, 1)} O Ydvp. (z)  if 2 > o
C{'«F*l(—z){nzrep;” (1-m® ({xT}))}e_H£2)(x)}dVF* (z) ifz < zq,

where

m(e)= / (t(1)—0)(w(y)) " dvp(y), HM(z) = mM((—o0, ),
[wo,00) (e

and

m(Q)(.)=/<— m.(e‘t(y))(w*(y))"ldw*(y), HP(z) = mP ([, 00))

with 0 < w*(z) = w(z)+ (0 — t(z))ve- ({z}), m& and m® as contin-
uous parts of m) and m® respectively, and Dg) and D;g;z) as the sets

of discontinuity points of m!) that lie in (—oco,z) and of m® that lie
in (z, 00), respectively.

COROLLARY 1.2. If we have the assumptions in Theorem 1.1 met
with F* continuous, then the conclusion of the theorem holds with the
following in place of (2):

c(6) ty) — 0

(2) dFy(z) = w—(x‘jexp{— (oo —w(‘ZTdVF* (y)}dvp-(z),

where xq is as the statement of Theorem 1.1.

COROLLARY 1.3. If we have the assumptions in Theorem 1.1 met
with F* continuous, then for any distribution Fy (that is, absolutely
continuous with respect to vp~) the conclusion of the theorem holds on
taking, in place of (2), that Fy is concentrated on D and it satisfies the
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following:
(3) dFy(z)
= ( ) t( ) Vs €X VE* VEp«\T
= 0@ P . ]w(y)d Pt [ o )ive @)
= ¢c(0)k1(x)exp{6 oo ;U—(—yjdVF* (y)}dvp+(z), z €D,
where
z) = ——l—ex — Hy) Ve
4) ki(z) = @) p{ oo w(y)d F(y)}-

REMARK 1.4. In Corollary 1.3, F*(z) = z, z € R, implies that we
have

_ 0, o) | R
dFy(z) = 0 (@) xp{— oo (y)dy} p{0 /(zo,x] w(y)dy}d
(5) = c(0)ki(z)exp{0 oo w—(y—)dy}dx,
in place of (4) and
Q k@) = ——expf— [ D gy
w(z) (o] WH)

in place of (4).

Let us now define an exponential family that is a special case of
(4). Let X be a random variable with a distribution function Fj that
is absolutely continuous with respect to vp« with density fg(z) of the
form:

(7) fo(x) = c(O)k(@) @, 2 € R, 6 € R,

where 0 < k(z) = exp{— fwo 2] (y)dve«(y)}, and p*(z) = F*(x)— F*(a)
and Eyt(X)] =0. If w(z) =1, then we have the family (7) in place of
(4). In (7) if we take, F*(z) = z, z € R, then (7) simplifies to

(8) fo(z) x k(z)e?®, z e R, 0 e R.
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2. Exponential families via Chernoff-type inequalities

We characterize the generalized exponential-type family introduced
in (4) by using a version of the Chernoff inequality using Alharbi and
Shanbhag [1} and Mohtashami Borzadaran and Shanbhag [8].

LEMMA 2.1. Let F* be a non-constant Lebesgue-Stieltjes measure
function on R and vp~ be the measure on the Borel o—field of R deter-
mined by it. Let X with a distribution function F' be a random variable
such that E{t(X)} = 0, where t(.) is increasing and let ¢’ be as defined
before. Then, for almost all [F| a € R,

/m GO o)~ 0ar@)ave- )
= [@-a([ (@) dr-w)iFw,
R (a,x]

provided the left hand side of the identity is finite.

Proof. For details of the proof of Lemma see Alharbi and Shanbhag
[1] and Mohtashami Borzadaran and Shanbhag [8]. O

THEOREM 2.2. Let F* be a non-constant Lebesgue-Stieltjes measure
function on R and v~ be the measure on the Borel o—field of R de-
termined by it. Let X be a random variable and t be a function that
is absolutely continuous with respect to vp~, such that E{t(X)} = 6
and E({t(X)}?) < oco. Further, let w be a Borel measurable function
such that w(X) > 0 a.s. and Var{t(X)} = E{t'(X)w(X)}, where t' is
the Radon-Nikodym derivative of t with respect to vp+~. Assume that
t' > 0 and let T be the class of real-valued absolutely continuous func-
tions g with Radon-Nikodym derivative ¢ with respect to the measure

vp~ satisfying E({g(X)}?) < oo and 0 < E{w(X)L‘-’t’ﬁ()%]Q} < co. Then
Var[g(X)]

Y 7 7. —
ger B{w(X )—[gt,(();))] }

(9)

if and only if the distribution function of X satisfies

1) ( / (1) ~ AP W) dvy-(2) = W), 7 € R

?
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Proof. Note that if (9) holds with g = ¢, we have

Varlg(X)] _,
B{w(x)gXLy

'(X)

and hence to have the “ if ” part of the theorem, it is sufficient if we
show that

/ 2
(1) [ v GO art) > varlax), g€

By using Lemma 2.1, and assuming that X and X* are independent
random variables with the distribution function F, we have for almost
all [F] a € R,

Var{g(X)} = -E{( /( Xg’(y)de(y)f}

- I /( VW) g'(y; dvp-(4))7)

(g W))*
x+x) t'()

! 2
(12) = 3P0 ([ G w)

dvr=(y))}

= E{(t(X)-6

(a,X] t/(y)
! 2
= [tw-o(] LD arw)ire
R

(a,x] tl(y)
-/,

(9 (0) OVF(e)
sy U, @)~ 0ar@ha @)
! 2
- [  wwarw)

y)
lg'(X )]2}
t'(X)

= E{w(X)

(Note that here and in what follows, we take f( o = f(b, g ifa>b)

To prove the “ only if ” part, we use an approach somewhat different to
that used in Alharbi and Shanbhag [1]. For every real v and u, let g, be
such that g/, (z) = <y cos(uz) + t'(z) be the Radon-Nikodym derivative of
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it with respect to vg«. Then (11) gives that
Var{gu(X)} = Var{gu(X) - gu(a)}
= Var{/ (t'(z) + 7 cos(uz))dvps (z)}
(a,X]

(13) Var{t(X)} +v*Var{ /( X (cos(uz))dvr-(z)}

+2vCov{t(X), /( X cos(uz)dvp«(z)}

w(X) 2
700 [t/ (X) + v cos(uX)]*}.
It follows from (14), in view of the assumption

E(t'(X)w(X)) =Var(t(X)),

E{

that

(14) fy2{Var{/(lz X cos(uz)dvp«(z)} — E{zl:(())g)) cos?(uX)}}

+24[Cov{t(X), /( | costun)de-(2)} = Bw(X) cos(u))] <.

In view of (15), we get that
E{(t(X) — 0)/( X cos(ut)dvp+(t)} = E(w(X) cos(uX)).
This relation implies by: Fubini’s theorem that
/mcos(ux)w(x)dF(a:) = /mcos(uy){ o) (t(z) — 0)dF (z)}dvr-(y).
,00

The relation above also holds if cos(uz) is replaced by sin(ux) and hence
when cos(ux) is replaced by exp{iuz}; then from the uniqueness theorem
of the Fourier transforms the required result follows. O

REMARK 2.3. We can establish the “ if 7 part of Theorem 2.2 via a
slightly different way the same as mentioned in previous chapter.

The following theorems are essential versions of theorems related to
covariance identities.
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THEOREM 2.4. Let F* be a non-constant Lebesgue-Stieltjes mea-
sure function on ® and vp~ be the measure on the Borel o— field
of R determined by it, and let t and Z be Borel measurable func-
tions. Let X be a random variable with a distribution function Fy such
that t(X) is integrable with 8 = Ep[t(X)] and Eg(|Z(X)|[{x¢c(ap)}) <
oo for every —o0o < a < b < oo and satisfying the condition that
liminf, . (t(x) — @) > O if the right extremity of Fy equals oo, and
the condition that liminf,_, (0 — t(z)) > 0 if the left extremity of Fy
equals —oco. Further let T be the class of real-valued absolutely contin-
uous functions g with Radon-Nikodym derivative g’ with respect to the

measure vp« (i.e. such that g(b) — f(a B ¢ (z)dvp~(z) for all a and
b with a < b). Then, we have the cond1t1on
(15) Covp{g(X), HX)} = Ep{Z(X)g'(X)},

met for all g € T with Eg( | Z(X)g'(X) | ) < oo, if and only if

(16)  Z(z)dFy(z) = { / — 0)dFp(2)}dvee (2), T € R.

THEOREM 2.5. Let X, g, 7, Z and t be defined as in Theorem 2.4,
but additionally with t(.) absolutely continuous with respect to vp- and
t(X) as nondegenerate square integrable satisfying

(17) Varg{t(X)} = Eg(Z(X)t' (X))

(with two sides of the identity well defined and finite). Furthermore,
let 7* be the set of g € 7 for which ¢(X) is square integrable and
Eg{Z(X)g'(X)} is defined and nonzero. Then

¢ VarolgCOIVaraft(X)]
e EHZ(X)g(X)}

if and only if (16) holds.

(18) =1

113

Let vp» be a non-atomic measure, then the “ only if ” parts of The-
orems 2.2, 2.4 and 2.5 characterize generalized continuous exponential
family with the form (4). We have the following theorem related to char-
acterization of generalized continuous exponential family for the case
that F™ is continuous:
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COROLLARY 2.6. Let X, g, 7, w, and t be defined as in Theorem
2.2. Also, let

! 2
Varg(g(X)) < Ep{w(X) [gt ,(())(())] }, forallg € T,
and equality holds when g is linear in t. Then the distribution of the
random variable X is given by (4).

COROLLARY 2.7. Let X, g, 7, Z, and t be defined as in Theo-
rem 2.4 but additionally with t absolutely continuous with respect to
non-atomic measure vp-, T* as a subset of ¢ € T for which g(X) is
square integrable with E¢(Z(X)g' (X)) # 0 and t*(X) integrable and
Varg{t(X)} = Eg(Z(X)t'(X)). Then

B{Z(X)g (X))
19 Vanlet0) 2 iz

if and only if for all g € 7*, the distribution of the random variable X
is given by (4). Equality holds when g is linear in t.

forallg e v

e Corollary 2.7 with Z(z) = 1, Corollary 2.6 with w(x)
orem 2.4 with Z(z) = 1 and Theorem 2.2 with w(z)
characterizations of the exponential family of the form (7).

e Let X, g, 7, Z, and t be defined as in Corollary 2.7 but F*(z) =
z, x € R and Z(z) = 1. Then

E2{d(X)}
Eo(t'(X))

in place of (19), if and only if for all g € 7*, the distribution of
the random variable X is given by (8). Equality holds when g is
linear in ¢.

Varg(g(X)) > for all g € 77,

o Let X, g, 7, w, and t be defined as in Theorem 2.2 but F*(z) =
z, x € ® and w(z) = 1. Also, let

l'(X)I?
t'(X)
and equality holds when g is linear in ¢. Then the distribution of

the random variable X is given by (8).

Varg{g(X)} < Ep{ }, forall g € 7,
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TABLE 1. Characterization Based on t(z), w(z) and Up-

per Bound of Varg(g(X)) in Continuous Case

503

Upper bound for w(zx) t(z) Range of Name of
Vare(g(X)) @ the random variable X | Distributions
Eo{ld(X)]?} 1 T zeR Normal

Eo{ X;C2 l¢'(X)1%} z |2 %Inz z € (0,00) Lognormal

Eo{Z[g'(X))?} 7 cx—1 € (0,00), ¢>0 Gamma
E{ XD g2y || o —1 | Leletl) z€(0,1), ¢c>0 Beta
Eo{£19'(X))?} z | 2z?~1 z € (0,00), ¢>0 Generalized
Rayleigh
Eo{e~X[g'(X))*} 1 e® z € (0,00), ¢>0 Standard
Log-gamma

°In this table ¢ is a positive constant.

Based on the Corollary 2.6 when F*(z) = z, x € R, we have the
following characterizations via t(z) and upper bounds of the variance of

g as seen by Table 1.

REMARK 2.8. We can find based on Corollary 2.7 via ¢ and lower
bound of the variance of g, characterizations for some distributions anal-
ogous to those in Table 1.




504 G. R. Mohtashami Borzadaran
3. Discrete families via Chernoff-type inequalities

Let v« be concentrated on a countable set C, such that v« ({a:}) =
B > 0, then we have a discrete version of the Theorems 2.2, 2.4 and 2.5
as follows:

COROLLARY 3.1. Let F* be a non-constant Lebesgue-Stieltjes mea-
sure such that v~ is concentrated on a countable set C with each point x
of C having vp+ ({:v}) =, B> 0. Also, let X be a random variable and t
a strictly increasing function with Eg{t(X)} = 6, and Ey({t(X)}?) < cc.
Further, let w be a function such that w(z) > 0 for each z € C, and

Varg{t(X)} = Eg{%w(X)}.

Further, let T be the class of real-valued functions g satisfying
B ({9(X)}?) < o0

and

. Y12
0 < Ep{w(X) [gt(()()g) _gt(é_))] } < oo,
Then
20 BV arofo(X)

sup X axoET = b

geT Eg{w(X)‘h—L[gt((X) _gt((X_)) }

if and only if the probability density function of X satisfies in the
following:

(21) w@)f@) =8 D, (Hy)-0)f@), z€C.

{yeC, y>z}

Proof. The result follows as a corollary to Theorem 2.2 on taking F™*
such that vp« is concentrated on C such that vp« ({:c}) =, x € C; note
that we have now ¢'(z) = Mﬂﬂt), z € C and t'(z) = %, x €
C. O

Let X be a random variable with values in B*; we call a discrete
exponential family a shifted scaled discrete exponential family if F*(z) =
ﬁ[%], z € B*. Also, we define for each 8 > 0, Agg(z) as

g(z + B) — g(=x)
B

, T € B*,

(22) Apg(x) =
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where g(.) is a real-valued function. Under the stated assumptions, we
have the following specialized theorem leading us to a characterization
of the shifted scaled discrete exponential family.

THEOREM 3.2. Let g be a real-valued function defined on B* with
Ey{ [i"%@ } < oo for all g and X be distributed as (8) and Agt*(z) > 0
for all z € B*. Then we have the following inequality:

[Aﬁg( )] }
Agt*(X)

(23) VIg(X)] < BB = =

Proof. The result follows on noting that in (8) the function k is such
that w(z + B)k(z + B) = Bk(z), x € B* and hence, we have under the
validity of (8),

2 2

pos(il) - ﬂeE{————[‘Zﬁi((‘?)] )
_ gz +8) ~ 9@ ooz
) a{m%{ ot B~ i) D
_ lg(z) — BI? z

(24 - T 55 o= D c(o)ka — 0)07)
1 — gz =B 2
~ ﬁ{z%{ k()T
1[0 - (X—ﬂ)]z
= PN =g

From the above equality, we get the inequality (23). O

THEOREM 3.3. Let the inequality (23) be satisfied for all real-valued
functions g defined on B* for some function t* with Agt*(z) > 0 for all
x € B*. Further suppose Ey[t*(X)] = 6 and the equality holds in (23),
when g is linear in t. Then the distribution of X belongs to a family of
the form (8).

Proof. On taking w(z + B)k(z + B) = Bk(z), = € B*, lead us to a
characterization of a family of the form (8). a
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REMARK 3.4. We can prove Theorem 3.2 and Theorem 3.3 directly
based on the definition of Ag.

o If B* ={nB+a: n € Z}, then in Theorem 3.2, the inequality
(23) is valid for the case of the probability density function of the
random variable X belonging to a shifted scaled bilateral power
series family; also, Theorem 3.3 characterizes a shifted scaled bi-
lateral power series family.

o If B*={nB+a: n € N}, then in Theorem 3.2, the inequality
(23) is valid for the case of the probability density function of the
random variable X belonging to a shifted scaled power series fam-
ily; also, Theorem 3.3 characterizes a shifted scaled power series
family.

e IfB*={nB+a: ne Ny =1{0,1,2,..,n0}}, then in Theorem 3.2,
the inequality (23) is valid for the case of the probability density
function of the random variable X belonging to a shifted scaled
binomial family; also, Theorem 3.3 characterizes a shifted scaled
binomial family.

e For 8 = 1,and a = 0, based on Theorem 3.3, we can obtain charac-
terization of the bilateral polynomial power series, discrete quar-
tic, scaled discrete normal, Poisson, binomial, negative binomial,
Heine, Euler, Pseudo-Euler and Polya Eggenberger) distributions
respectively. In this case, we obtain the first theorem in Pap-
athanasiou [10, Theorem 2.1, p. 165] as a corollary of the above
results.
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