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IDENTIFICATION PROBLEMS OF
DAMPED SINE-GORDON EQUATIONS
WITH CONSTANT PARAMETERS

JUNHONG HA AND SHIN-ICHI NAKAGIRI

ABSTRACT. We study the problems of identification for the damped
sine-Gordon equations with constant parameters. That is, we estab-
lish the existence and necessary conditions for the optimal constant
parameters based on the fundamental optimal control theory and
the transposition method studied in Lions and Magenes [5].

1. Introduction

The dynamics of a series of small-area Josephson junctions connected
by superconducting strips is described by a partial differential equation

® 0% o 9%0 d 09
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where C, G, L and ® are capacitance, conductance, inductance and flux
quantum, respectively, and I. is the maximum supercurrent in each
Josephson junction, [, is a current supplied by an external source and
6 = 0(t,z) is the phase difference in the Josephson junction at time ¢
and position . Multiplying —27/(C®) on the both sides and putting
y =6 in (1.1) we have

(1.1)

= I.sin @ — I,
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where A = §%/82% and o = G/C,3 = 1/(CL),y = 2n1./(C®), [ =
vIy/I.. We call the equation (1.2) the (one dimensional) damped sine-
Gordon equation by a current source. In particular, if all physical pa-
rameters are measured in the unit length A = ®/(27L1.) and in the unit
time 7 = C®/(2n1.), then (1.2) is simplified by

2
(1.3) %—Fa%t/——Ay—ksiny:f,
where o = G/C and f = /1.

Many scientists have had great interests in « and f appeared in (1.3).
For example, in Nakajima and Onodera [8], they studied the property
of parameters by numerical simulations based on the finite difference
method and in Bishop, et al. [2] and Levi [3], they verified numerically
that the equation (1.3) leads by special choices of parameters and forc-
ing functions to chaotic behaviours. In Temam [10], he has extensively
studied the stability of (1.3). In Ha and Nakagiri [6], they studied the
optimal control problems of the controlled system governed by (1.3), and
in Park, et al. [9], they studied the problems of identification for (1.3).

In this paper we are going to study the problems of identification of
a general equation described by

2

(1.4) %+a%—ﬁAy+7siny=5f

in R" (n < 3), where a, 3, and § are constants and f is a prescribed
source function. In our identification problems all parameters o, 3,y
and & are assumed to be unknown. We remark that in [9] they didn’t
study the identification problems of (1.4) for the case where the param-
eter B is unknown. For solving the identification problems of (1.4) we
will utilize the method which is used by Lions [4] for solving the optimal
control problems. Whenever this method is utilized, we have to prove
the Gateaux differentiability of the solution map from the set of param-
eters to the solution space of (1.4). When 3 is unknown, we can not
carry over the same analysis as we do for the case of 3 being known, be-
cause we have to solve the equations having forcing terms defined by the
Laplacian operator A. The equations can not be solved by the standard
variational method. In order to overcome this difficulty, we will utilize
the method of transposition studied in Lions and Magenes [5]. We note
that for the optimal control problems we often use the transposition
method to describe the adjoint state equations in the weak sense, but
for our identification problems we use the method to prove the Gateaux
differentiability of the solution map and to characterize the the Gateaux
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differential of the solution map. In Ahmed [1], he only used this method
of proving the existence of the optimal parameters for linear second or-
der equations with the same spatial differential order. For example, for
fitting (1.4) with one equation studied in [1], it is enough to replace the
parameter « and the nonlinear term «ysin y to the operator —aA and 0,
respectively, which is an easier case than our case.

In this paper we will establish new results on the existence and neces-
sary conditions of the identification problems for the damped sin-Gordon
equations as a class of nonlinear hyperbolic equations of physical impor-
tance.

This paper is composed of three sections. In studying the identifica~
tion problems for (1.4) we are réquired to give the fundamental results
on the weak solutions of (1.4). Hence in section 2, we explain the ex-
istence, uniqueness and regularity of solutions for damped sine-Gordon
equations. In section 3 we state and solve the constant parameter iden-
tification problems for damped sine-Gordon equations.

2. Preliminaries

Let © be an open bounded set of the n (n < 3) dimensional Euclidean
space R"™ with a piecewise smooth boundary I' = Q2. Let Q = (0,T) X
2,2 =(0,T)xI',R = (—00,00) and R* = [0, 00). We consider an initial
boundary value problem for damped sine-Gordon equations described by

2 0
%(t,x) + Oéa_Z(t,w) — BAy(t,z) +ysiny(t,z) =6f(t,z) in Q,
(2.1) y(t,2) =0 on X,

y(0,z) = yo(z) in Q and %%(O,:c):yl(x) in Q,

where 3 > 0,a,7,6 € R, A is the Laplacian, f is a given function and
Yo, Y1 are initial conditions.

To set (2.1) into the evolution equations or variational forms, we
introduce two Hilbert spaces H = L?(Q) and V = H}(Q) by taking
account of the Dirichlet boundary condition. We endow these spaces
with inner products and norms as follows:

(,9) = /Q P(e)b(@)dz, | = @)V Vop € LA(Q);

(:0) =3 [ Grvla)g-ota)da, [l = (6,00 V6,0 € H(Q)
im1 i %
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Then a pair (V, H) is a Gelfand triple space with a notation, V — H =
H' — V' and V' = H~1(Q), which means that embeddings V C H and
H C V' are continuous, dense and compact. By c; and ¢, we denote the
embedding constants of theirs, respectively. By (-, -) we denote the dual
pairing between V' and V. Let us define a bilinear form on V by

a( ) = /Q Vé(z) - Ve(a)dz = (6,¢) Y, € H(Q).

This bilinear form a(-, ) is symmetric and bounded on V x V. It is also
coercive on V x V, i.e.,

a(¢,8) > l9|* V¢ € Hy(Q).

By the boundedness of a(-,-) we can define the bounded linear operator
A € L(V,V'), the space of bounded linear operators of V into V', by
the relation a(¢,v) = (A, ¢) for ¢,y € V. The operator A is an
isomorphism from V onto V' and has a dense domain D(A) in H, but
it is not bounded in H. We define the functions siny and cosy from H
into H by

(siny)(z) =siny(z) and (cosy)(z) = cosy(z) for all z € .

Using the operator A and nonlinear function siny, we convert (2.1)
to a Cauchy problem in H:
dy(t) | dy(t)
Ay(t iny(t) =40f(t), te(0,T
2 a2 T%a +BAy(t) +ysiny(t) = 0f(1), te(0,T),
y(0) =y €V,

dy
=2(0) = H.
dt 0)=u €

Let us define the solution Hilbert space W(0,T) by
W(0,T) = {glg € L*(0,T;V),¢" € L*(0,T; H),g" € L*(0,T;V')}
with inner product
T
(£, 9wor = /0 ((f),9®)) + (F(£), g’ ) + (f"(t), 9" ()v) it
where (-, -)y- is the inner product of V'. We denote by D’(0, T') the space

of distributions on (0,7).
Let us define further the definition of weak solutions for (2.2).
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DEFINTION 2.1. A function y is said to be a weak solution of (2.2)
if y € W(0,T) and y satisfies

<y”(')’ ¢> + (ayl(')7 ¢) + ((/By()a ¢)) + (7 Sing(')) ¢) = (df()} ¢)
for all ¢ € V in the sense of D'(0,T),
y(0) = 3o, ¥'(0) =1

For the existence and uniqueness of weak solutions for (2.2), we can
prove the following theorem. For the proof, see Ha and Nakagiri [7].

THEOREM 2.2. Let a,v,6 € R, 8 > 0 and f, yy, v1 be given
satisfying

(2.3) feL?0,T;H), weV, yn€H.

Then the equation (2.2) has a unique weak solution y in W(0,T) and y
has the regularity

(2.4) y e C([0,T];V), v € C((0,T]; H).
Furthermore y satisfies
25) WO+ ly®I? < ellvoll® + 1> + 1132070 t € 0,71,

where c is a constant depending on «, 3,7 and §.

REMARK 2.3. If we replace the nonlinear term sin y(t) with the term
B(t)y(t) in (2.2), then Theorem 2.2 is true, provided that the multiplier
operator B(-) belongs to L>°(0,T; L(H, H)).

3. Problemns of identification

In this section we study the problems of identification for damped
sine-Gordon equations described by

v + oy + (Bo + B2 Ay + ysiny =6f in (0,T),

y(0) =yo, ¥'(0) =1,

where 8y > 0 is fixed. In (3.1) we replace the diffusion parameter 3 to
Bo + (32 to obtain the linear space of parameters o, 3,y and 6. Hence

the diffusion term in (3.1) never disappear and is uniformly coercive for
all 3 € R.

(3.1)
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For setting the problems of identification we assume that the param-
eters o, 3,7 and & appeared in (3.1) are unknown and we take P = R*
as the set of parameters (a, 3,7, d). The Euclidean norm of P is denoted
by |- |. For simplicity we set ¢ = (&, 3,7,9) € P. Since for each ¢ € P
there exists a unique weak solution y = y(g) € W(0,T) of (3.1), we can
uniquely define the solution map ¢ — y(q) of P into W(0,T).

Let K be a Hilbert space of observations and let || - ||x be its norm.
The observation of y(g) is assumed to be given by

(3.2) z(q) = Cy(g) € K,

where C is a bounded linear observation operator of W (0, T) into K.
The cost functional attached to (3.1) with (3.2) is given by

(3.3) J(q) = ICy(q) — 2l for g€ P,

where 24 € K is a desired value of y(q).

Assume that an admissible subset P,4 of P is convex and closed. The
identification problems subject to (3.3) and (3.1) are usually divided into
the existence and characterization problems. That is,

(i) The problem of finding an element ¢* € P,4 such that

. .
(34) of Jla)=J(g");

(ii) The problem of giving a characterization to such the g*.

As usual we call ¢* the optimal parameter and y(g*) the optimal state.
It is well-known that there are no general method of solving (i), and in
many cases some stronger conditions on the data in (3.1) are required
to solve (i). Here we assume that P4 is a compact subset of P and
we solve (i). It is also well-known that we can solve (ii) by deriving
necessary conditions on ¢*. If J(q) is Gateaux differentiable at ¢* in the
direction q — ¢*, then ¢* has to satisfy

(3.5) DJ(g*)(q —¢*) > 0 for all g€ P,q,

where DJ(q*) denotes the Gateaux derivative of J(gq) at ¢ = ¢* in the
direction ¢ — ¢*. We analyze the inequality (3.5) by introducing an
adjoint state equation for (3.1) and deduce necessary conditions on g*.

3.1. Existence of optimal parameters

In this subsection we assume that P,y is a compact subset of P and
we show the existence of ¢*. The following theorem is essential to solve
the problem (i) and (ii).
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THEOREM 3.1. The map q¢ — y(g) : P — W(0,T) is weakly con-
tinuous. That is, y(g.) — y(q) weakly in W(0,T) as g, — g in R*.

Proof. Let us assume g, = (an, BnyYn,0n) — ¢ = (@, 3,7,9) in R4,
ie., an — o,y — B,Y — v,0n — 6 in R. Let y, = y(gn) be the weak
solution of

(3.6) y” + a’ny, + (ﬁrzy, + ﬂO)Ay + Ypsiny =6, f in (0, T):

Y(an;0) = o, ¥'(4n; 0) = 1.
It follows from (2.5) that

@) + lgn I < e(an)lvoll® + lyal* + 11220 5m) VE € 10,77,

where ¢(g,) depends on ay, Bn,n and 8,. Since B2 + By > Bo for all
n, the sequence {c(qn)} is bounded in R*. Hence {y,} is bounded in
L*>(0,T;V) and {y,} is bounded in L*>°(0,T; H). Also we can easily
verify that {y”} is bounded in L?(0,7;V’) by applying the bounded-
nesses of {y,}, {¥.,}, {Ay,} in L2(0,T; V"), the boundedness of {g,} in
R* and the inequality | sin y,| < |yn| to the first equation in (3.6). Hence
we can extract a subsequence of {y,}, denoting it by {y,} again, and
choose z € W(0,T) such that

yn — 2z weakly in L%(0,T;V),

y, — 2 weakly in L%(0,T; H),

y!! — 2" weakly in L2(0,T;V’),

2(0) = go, 2'(0) = w1

Since the embedding V' < H is compact, by the classical compactness
theorem the embedding L2(0,T;V) N WbH2(0,T; H) — L%(0,T; H) is
compact. Since {y,} C L2(0,T;V) N WY2(0,T; H), we see by the first
one in (3.7) that

(3.7)

(3.8) yn — 2z strongly in L2(0,T; H).
Since siny is continuous on H, we have
(3.9) siny, — sinz strongly in L2(0,T; H).

Finally we take the limit n — oo on the weak form of (3.6) by using
(3.7) and (3.9). Then z is a weak solution of

2" 4 a2 + (8% + Bo)Az +ysinz =6f in (0,T),

2(0) = yo, 2'(0) =

in the sense of Definition 2.1. Hence by the uniqueness of weak solutions,
we have z = y(g). Therefore we show that y(g.) — y(q) weakly in

(3.10)



516 Junhong Ha and Shin-ichi Nakagiri

W (0, T) without extracting a subsequence {g,} again by the uniqueness
of weak solutions. O

The following theorem follows immediately from Theorem 3.1 and
the lower semi-continuity of norms.

THEOREM 3.2. If P,y C P = R* is compact, then there exists at
least one optimal parameter q* € P,q for the cost (3.3).

3.2. Necessary conditions

For proving that J(g) is Gateaux differentiable at ¢* in a space, we
have to estimate the quotients z)y = (y(gx) — y(¢*))/A, where g =
a*+A(g—q*), X € (0,1]. Weset y) = y(g») and y* = y(g*) for simplicity.
Generally it is desirable to estimate 2z in the solution space W(0,T).
But since the second order evolution equations for z) have the forcing
term containing the diffusion operator, it is not easy or impossible to
solve the equations by the standard variational manner in [7]. Hence
we will restrict ourselves to estimate (zx(T),zy) € H x L?(0,T; H) as
A — 0 based on the method of transposition in [5].

Let us begin to prove the weak Géateaux differentiability of the so-
lution map ¢ — (y(g;T),y(q)) of P into H x L?(0,T; H) through the
method of transposition and characterize its Gateaux derivatives. For
A € [0,1] we consider the terminal value problems described by linear
damped evolution equations

9" — o' + (B*% + Bo)Ag + B(t,q,\)¢ = 6*g in (0,T),
HT) =0, ¢(T) = ¢1,
where ¢ € H,g € L?(0,T; H), B(t,q,0) = v* cosy* and

(3.11)

1
B(t,q,\) =~* / cos(Byx + (1 — 0)y*) do for X € (0,1].
0

Here we note that the functions B(t, ¢, A), A € [0, 1] are only multipliers.

It can be proved that the problem (3.11) has an unique weak solution
¢ = ¢(¢1,9) € W(0,T) if we take B(t) := B(t,q,\) and consider the
reversed time flow ¢ — T — t (cf. Remark 2.3). Further we have the
estimate

(3.12) 18O + o) < el * + llglF20,1,m))» ¢ € [0,T),

where ¢ is a constant independent of A and q.
We now explain the method of transposition. For fixed ¢ and A we
define X as a space of (¢1,¢), where ¢ = ¢(¢1,g) is the solution of
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(3.11) for given (¢1,9) € H x L?(0,T; H). We define the inner product
on X)\ as
(@’ W)XA = (¢la ¢1) + (g’ h)Lz(O,T;H) for & = (¢1a ¢)1 U= (wly /‘/J) € X,

where ® = ¢(¢1,9) and ¥ = ¢(¢1,h). Then it is easily verified that
(Xx, (-,-)x,) is a Hilbert space and the map (¢1,¢) — (¢1,9) of X
onto H x L%(0,T; H) is an isomorphism. For simplicity of notations, let
us define the linear operator £ : Xy — L?(0,7T; H) by

LA(9) = ¢" —a*¢' + (8% + Bo) Ad + B(t,q, ).
By the method of transposition due to Lions and Magenes [5], for

a bounded linear function ! on X there is a unique solution ((31,¢) €
H x L%*(0,T; H) such that

T
(3.13) (G, ) + /0 (C(8), LA D)t = U1, 8) for all (¢1,6) € X

Note that the solution ({;,¢) depends on A.

THEOREM 3.3. The map q — (y(¢;T),y(q)) of P into Hx L*(0,T; H)
is weakly Gateaux differentiable. That is, for any fixed ¢* = (a*, 8%,
v*, 6*) and ¢ = (o, B, v, 6) the weak Gateaux derivative (21,2) =
(Dy(a*;T)(q — %), Dy(a*)(g — ¢*)) of (y(¢;T),y(q)) at ¢ = ¢" in the
direction q — q* exists in H x L*>(0,T; H) and it is a unique solution of
the integral equation
T

T !
310) ~(a,0) + [ (0, Lo@O) = [ (@ = el
+ 268%(8" — B)Ay*(t) + (v* — ) siny™(t) + (6 — 6*) f(t), 9(2))dt
for all (¢1,¢) € Xo, where y* = y(q*) and

Lo(#) = ¢" — a*¢ + (8% + o)A + 7" (cos y*) p.

Proof. For fixed q we set gy = ¢*+A(g—¢q*), A € (0,1]. We recall the
simplified notations yx = y(gx) and y* = y(¢*), which are weak solutions
to (2.2) for given parameters ¢, and ¢*, respectively. Then g € P and
lgx — ¢*| = Alg — g¢*| = 0 as A — 0. Also by Theorem 3.1 we have
(3.15) yx — y* weakly in W(0,T) as A — 0,
which also yields
(3.16) ya — y* strongly in L?(0,T; H) as A — 0.
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Since yy is a weak solution and the boundedness of {¢x}, by (2.5) we
have

B17) g :=sup{lia@I® + Wa(®)*: (6A) € [0,7] x [0,1]} < o0.
For X € (0,1] the quotient 2y = (y) — y*)/\ satisfies

* N LSinyy — siny*
Bt + (B2 + fo)Am + 4 2 2R

Y
= (a* — o)y + [28*(8* — B) — A(B — B*)?*| Ayx
+(y* —y)sinyx 4+ (6 —6*)f in (0,T),
z(0) = 2,(0) = 0,

or by the mean value theorem equivalently
(3.18)
1

2+ ot + (B2 + Bo)Azy + 7 (/ cos(Byx + (1 — 0)y™) dG)zA

= (o — o), + 26 (8" — B) — A(B = 5*)%] Aun
Hy" = y)singy + (6~ 6%)f i (0,T),
zx(0) = 2, (0) = 0.

Multiplying by (¢1, ¢) € X\ to the both sides of (3.18) and integrating
it over [0,7] we have

T T
(319 ~(a(D) )+ [ 0, L@0) di = [ (5000 at
0 0
where
A = (& —ayh(t) + [26°(8° — B) — M8~ ") Aya(t)
+(v* =) sinya(t) + (6 — 6*) f(2),
which is estimated by
Il < la® —aof lya@®llve + 218 1687 = Bl + X8 = B)Ilua @)l

+" =l lya @] + 16 = 5*| (| F @) lv-

Hence {f»}, is uniformly bounded in L2(0,T; V') and let ¢4 be the least

upper bound of it. Let us take I(¢1,¢) = fOT(f)\(t),¢(t)) dt in (3.13).
Then [ is a bounded linear functional on X,. Indeed,

T T
(3.20)[l(¢1,0)| < /0 |<fA(t),¢(t)>|dtS/O @ vl de

1/2
I ixll L2 o,mvny Vel (|<f>1|2 + ”9”%2(0,T;H))
veedT||(d1, 8) | x,-

IA

(A
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Hence (3.19) always admits the unique weak solution in the sense of
(3.13) and (2x(T), zx) becomes the solution of (3.19). Since z\(T) € H
and zy € L?(0,T; H), we can take ¢1 = —zx(T') and ¢ such that L£(¢) =
zy in (3.19). Then we have

T T
(321)  |aT)P+ /0 AP dt = /0 (), 6(8)) dt.

From (3.20) the right hand side of (3.21) is estimated by

T
(3.22) /O |(f>\(t),¢(t))|dtS\/EC4T(|ZA(T)|2+||Z>\”%2(0,T;H))1/2

By (3.21) and (3.22) we have

1/2
A@)P + 2allEeqo iy < VeesT (1D + sz )
which implies
}zz\(T)lz + ”Z’\Hiz(O,T;H) < CCZ’I'2 < 0.

This implies that {z\(T")} is bounded in H and {z,} is bounded in
L%(0,T;H ). Hence we can extract subsequences, denoting them by
{zA(T)} and {z\} again, and find z; € H and 2z € L?(0,T; H) such
that

2\(T) — 2 weakly in H,
zy — z weakly in L?(0,T; H).

(3.23)
It is easily proved by (3.15) and (3.16) that
(3.24) lim fy = fo weakly in L0, T; V"),
where
fo=(a" —a)y* +26°(8" — DAY + (v* —7)siny” + (6 — 6)f.

Multiplying (3.18) by (¢1,¢) € Xo and integrating it over [0, T} we have
(3.25)

T T
*(ZA(T),¢1)+/O (2a(t), Lo(#)(t)) dt+6(>\)=/0 (a(t), 6(2)) dt,
where

T
e\ = /0 (2x(), (B{t,0,)) — B(t, ,0))6(t)) dt.
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We shall prove that €(\) — 0 as A — 0 for each (¢1,¢) € Xp. Since
(2x(6), (B(t, g, )) — B(t,4,0))4(t)) is represented by

1
’Y*/Q/O [cos(Byx(t, )+ (1 — O)y*(t, z)) — cosy*(t, z)]2x(t, )dO(t, T)dz,

by using the Lipschitz continuity of the cosine function we can estimate
the integrand of e(\) as follows:

(3.26) |(2a(2), (B(t, 4, A) — B(t,4,0))9(t))]
< I laa@llze@ eIl Laylya ) — y™ ()]
< @l la®| o®)] lyalt) — v (1)l

where c5 is a constant such that ||9|[p4q) < csl¥| for ¢ € V, which is
possible when n < 3. Finally by integrating (3.26) over [0,7] we have
from (3.16)

2. % *
@ < il (max 10 Iallzoanln = leers

—0 as A—0.

Here we used the boundedness of {2y} in L2(0,T; H) and ¢ € C({0,T}; H).
Hence by (3.23) and (3.24), we take A — 0 in the both side hands of

(3.25) to have

(3.27)

T T
(e1,61) + /0 (2(8), La($)(2)) dt = /0 (folt), 6(2) dt V(er, @) € Xo.

Now we set I(¢1,¢) = f0T<f0(t), ¢(t)) dt in (3.27). Then it is clear that [
is a bounded linear functional on Xg. Hence the equation (3.27) has an
unique solution (21,z) € H x L?(0,T; H) in the sense of (3.13). There-
fore the weak limit (21,z) becomes an unique solution of (3.27), and
by the uniqueness of solutions (z1, z) is shown to be the weak Gateaux

derivative (Dy(q*; T){q — ¢*), Dy(q¢*)(¢ — ¢*)).

Since (y(q;T),y(q)) is weakly Gateaux differentiable at any ¢ = ¢* in
H x L?(0,T; H), we will deduce the necessary conditions on ¢* for this
restricted class of distributive and terminal value observations. That is,
we consider the special cost functional J(g) given by

(3.28)  J(q) = kaly(q; T) ~ 251 + K2ly(q) — Zczi“%?(o,T;H)’

where z} € H, z2 € L?(0,T; H) and k; > 0,i = 1,2 such that k;+k2 > 0.
Let P,q be a closed and convex subset of P. In what follows we suppose
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that ¢* is the optimal parameter for the cost J(g) in (3.28) on P4,
i.e., g* satisfies (3.4). Then the necessary optimality condition (3.5) is
rewritten as

(3.29)

T
(m1(y(q" T) ~ zd), 1) +/0 (r2(y(q*) — 23)(2), 2(t))dt > 0 Vg € Pag,

where (21, z) is the solution of the integral equation (3.14).

Let us introduce the adjoint state p defined by the weak solution of
the adjoint system
(3.30)

{ p' —o*p' + (B*% + o) Ap + 7" (cosy*)p = ka(u(q*) — 23) in (0,T),
p(T) =0, p'(T)=—r(y(gT)— 2)-
or simply, by using the operator Ly,
pay [ L=l 0D
' p(T) =0, p(T)=—ri(y(g:;T) — zy)-

Since k2(y(q*) —23) € L?(0,T; H) and 1 (y(q*; T) — 2}) € H, there is an
unique weak solution p € W(0,T) of (3.31) and (p'(T),p) € Xo. Hence
by Theorem 3.3, if we take ¢; = p/(T) and ¢ = p in (3.14), then we have

T
(o1, k1 (y(a"s T) — 2)) + /0 (2(8), o (y(™; ) — 23(8)))dt

T
= /0 (& — @)y + 26*(8* — B)Ay* +(v* — ) siny*+(6 — 6*) f,p) dt,

and by (3.29)

T
/0 (@ — a)y*+ 28" (8" — B)Ay*+(y* — 7) siny™+(5 — %), p) dt > 0

for all g € Pyy.
Summarizing these we have the following theorem.

THEOREM 3.4. The optimal parameter q* for the cost (3.28) is char-
acterized by the states y = y(¢*),p = p(q*) of two systems

(332) Y FV (B4 B)Ay+y siny =87f in (0.7),
' y(O) = Yo, y,(O) =1,
(3.33)
p" — a*p' + (B + Bo)Ap + 7" (cosy)p = ka(y — 23) in (0,T),
p(T) =0, p'(T)=—r1(y(T) - z})
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and one inequality
(3.34) /()T((a*—a)y’%ﬁ*(ﬂ*—ﬁ)Aer(W*—v) siny+(d—6%)f,p) dt > 0
for all ¢ € P,q.

Let us deduce the bang-bang principle from (3.34) for the case where

Paq is given by Pyq = [a1, a2] x [0,81] X [11,72] X [61,82]. In this case
the necessary condition (3.34) is equivalent to

(3.35) /OT((OI* —a)y' (), p(t)) dt > 0 Ve € [oq, o),
ey C(6 (6" - 9)4v(0),p(0)) de 2 0 B € [0,63),
(3.37) /0 T((v* —7)siny(t),p(t)) dt 2 0 Vv € [n,72],
(3.38) /0 (6= )7, p(8)) de >0 V5 € [61,60]

First let us analyze (3.35). Put a = fQ %(m,t)p(m,t) dxdt and assume
that a # 0. Then (3.35) is rewritten simply by

(" —a)a >0 Va € [ag, as).
Consequently it is easily verified that o* is given by
1 1
af = §{sign(a) + 1}ag — i{sign(a) —1}ag.

Secondly let us analyze (3.36). Also put b = [, Vy(z,t) - Vp(z,t) dzdt
and assume b # 0. Then (3.36) is written by

B (6" = B)b >0 Vg € [0,5].
Consequently it is easily verified that 3* is given by
1
G = §{sign(b) +1}681 or B*=0.
Similarly, form (3.37)-(3.38) we can show that

*

N = %{sign(c) + 1}y — %{sign(c) — 1},

5 = %{sign(d) + 116 — %{sign(d) —1}4,,
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provided that

c = /siny(t, z)p(z,t) dedt # 0,
Q

d = /f(:c,t)p(a:,t) dzdt # 0.
Q

These are the so called bang-bang principle for the optimal parameter

q*

= (a*, B%,7*, 6%).
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