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STOCHASTIC FRAGMENTATION AND
SOME SUFFICIENT CONDITIONS
FOR SHATTERING TRANSITION

INTAE JEON

ABSTRACT. We investigate the fragmentation process developed
by Kolmogorov and Filippov, which has been studied extensively
by many physicists (independently for some time). One of the most
interesting phenomena is the shattering (or disintegration of mass)
transition which is considered a counterpart of the well known gela-
tion phenomenon in the coagulation process. Though no masses
are subtracted from the system during the break-up process, the
total mass decreases in finite time. The occurrence of shattering
transition is explained as due to the decomposition of the mass
into an infinite number of particles of zero mass. It is known only
that shattering phenomena occur for some special types of break-up
rates.

In this paper, by considering the n-particle system of stochastic
fragmentation processes, we find general conditions of the rates
which guarantee the occurrence of the shattering transition.

1. Introduction

The fragmentation process as well as the coagulation (or coalescence)
process has received much attention recently [2, 4, 5, 7, 17]. Besides
mathematical interests, these processes have many applications in phys-
ics and other natural sciences. In particular, the fragmentation process is
an important subject for polymer degradation, break-up of many objects
such as rocks, liquid droplets, glasses, etc [5, 6, 8, 14, 18]. Suppose there
are n particles in a box. We call a cluster consisting of k particles a
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k-cluster, and a k-cluster splits into 4 and k — ¢ cluster (1 < ¢ < k/2)
after waiting exponential amount of time with parameter given a priori.
After suitable normalization, Aizenman and Bak derived a governing
equation which is equivalent to
d o0
1) Eelmt) = a0 + [ dalal)els, O
€T

where ¢(z,t) is the distribution of particles of mass z at time ¢, a(z) is
the break up rate of z-cluster into smaller clusters, and b(z|z) is the rate
of creation of z-clusters conditional on the fragmentation of z-cluster [1].

The initial study of this fragmentation process dates back to Kol-
mogorov for mathematical interest [12]. Filippov soon generalized Kol-
mogorov’s result by finding the limit distribution of the process for the
case that, in the above notation, a(z) = £ with some special types of
b(z|z) (Kolmogorov considered only the case a(x) = z). On the other
hand, physicists have studied fragmentation dynamics, independently
from mathematicians by investigating equation (1) for some time. As a
result, some exact solutions and interesting phenomena have been pro-
posed by many authors [6, 8, 14, 16, 18].

One of the most interesting phenomena is the shattering (or disinte-
gration of mass) transition which is considered a counterpart of the well
known gelation phenomenon in the coagulation process. Different from
finding large size clusters, which is common stochastic particle system
[12], shattering is related to find small size clusters. Indeed, this was
first indicated by Filippov [9]. Though no masses are added to or sub-
tracted from the system during the break-up process, for some kernels,
the total mass [ zc(z,t)dz decreases in finite time. This is explained
(a little ambiguously) as due to the decomposition of the mass into an
infinite number of particles of zero mass.

This counterintuitive phenomenon is due to the fact that the equa-
tion (1) is a normalized limit of stochastic process of finite particles [1].
Assume initially there is a single n-cluster. Suppose the speed of the
fragmentation is so fast that there could exist ¢y < 0o, § > 0 and ¢(n)
such that £, does not depend on n, ¢(n)/n — 0 (i.e., ¢(n) = o(n)), and
at time tg, the total number of particles which form clusters of size less
then or equal to ¢(n) exceeds én. (This condition is analogous to the
definition of the stochastic gelation in Section 1 of [11] and will be used
to define the term stochastic shattering. See Definition 1 in Section
2.) Notice that the normalization to get the equation (1) is given by
letting each particle has mass 1/n so that the total mass of the initial
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single n-cluster is 1. After letting n tend to infinity, the n-cluster be-
comes a cluster with mass 1 in the limiting continuous model. Similarly,
[an]-cluster becomes a cluster with mass o and we rewrite the cluster
a-cluster in continuous model. Any cluster whose size is less than or
equal to ¢(n) in stochastic model becomes massless and disappears in
continuous model since ¢(n)/n — 0. As a result, in the above stochastic
model, since the dn amount of particles (or mass ) will disappear in the
continuous model by time ¢y, mass dropping phenomenon occurs. See
Theorem 5 in [10] for the analogous result of gelation.

The occurrence of shattering is known only for the case a(z) ~
1/z*, a > 0 with a special form of b(z|z), mostly when the explicit solu-
tion is known or after the assumption that the solution has some special
types [6, 9, 16]. It is the motivation of our paper to find more general
conditions which guarantee the occurrence of the shattering transition.
Note that it is a matter of estimating the speed of convergence of the
Markov process to its limit distribution. However, though tremendous
results are known about the speed of Markov processes, since the con-
figuration space of this fragmentation process is the partitions of n, (see
Section 2) and because of the complexity of the space it is difficult to
apply the well known theories.

Our idea is to estimate the speed of the process using a comparison
with other simple processes. This procedure is carried out through the
estimation of jump rates of special types. These types of stochastic
dominance are justified by the coupling arguments [10, 11, 15]. Indeed,
if we are interested in the speed of two processes, say Y,!,Y;? and if the
jump rates of Y;! dominate those of Y;2 for all steps, then the speed of Y;!
stochastically dominates that of ¥;2. We will use a slight modification
of this idea in Section 3. One advantage of this method is that a(x) and
b(z|z) do not need to have any form.

In this paper we mainly assume that a cluster breaks up into only two
small clusters, i.e., binary fragmentation. Multiple fragmentation is just
a simple generalization of this model, and our method can be applied
without a big change (see the Remark after the proof of Theorem 1 in
Section 3). Though only the case that a(x) is a decreasing function of
was examined by previous authors, we also consider the case that a(z)
is increasing.
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2. The stochastic fragmentation process and main theorems

In this section, we construct a sequence of finite state Markov chains
associated with the rate constants F'(i,7), 3,5 > 1. In the nth Markov
chain, there are n particles which form clusters. These clusters fragment
at rates determined by F'(4, j) to make smaller clusters (any 7+ j-cluster
breaks up into i-cluster and j-cluster with rate F(i,j)). After suitable
scaling, the Markov chains can be thought of as discrete, stochastic
approximations to solutions of the fragmentation equation (1) [1].

NOTATION.
(a) Let N={0,1,2,---}, Nt ={1,2,3,--- }.
(b) Let B, ={n:neNV", % kn(k) =n}.
(c) [-] represents the largest integer function.
(d) Let {e;}$2, be the basis ofRN+, ie., e; =(0,0,---,0,1,0,0,---),
where 1 is located in the ith coordinate.

REMARK. Note that any n € E, can be expressed by (n(1), n(2),
-+, n(n)), since all n(z) = 0 if ¢ > n, or using the basis defined on the
Notation (d), n = 3 ., n(¢)e;. Here, e; means that there is an i-cluster.
The space F, is indeed the partition of n, and the process X7 which
will be defined on this space can be considered as a random partition
process. The partition of n is known to be hard to analyze, which
causes a great complexity for investigating the dynamics of coagulation
or fragmentation.

Let {F(¢,7)}75=1 be a nonnegative sequence such that F(i,j) = 0 if
j <i. Fori < j,let A7 = (e;+e; —e€i4;). Let X{* be the Markov chain
on F, with generator

(2) TE) = D (Fm+AF) — FM)FG, )0 + 5)

i+j<n

for any bounded function defined on E,,.

We may describe the dynamics as follows.
The process waits at state 7 for an exponentially distributed amount of
time with parameter

(3) Xt(m) = > F(i,5)n( + 4),

i+j<n
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then jumps to state 7 + AL, (or i + j cluster fragments to form 7 and j
cluster) with probability

F(i,5)n(i + 5)
()

Since, for each n, the state space consists of finitely many points, i.e.,
|E,| < 0o, there is a unique well defined pure jump process, say X;* on
E,, for each n. Moreover, with probability 1, each sample path is right
continuous and has left limit. We will call this sequence of processes
{X7}52., the system of the stochastic fragmentation process, and we
will denote it simply by X{*. In general, we assume that the initial
configuration Xi = e,, € E,, i.e., initially, there is a single n cluster.

In this system of processes, we can define the stochastic shattering
phenomenon using the idea that in finite time at least dn, for some 6 > 0,
amount of mass is located in the o(n) order of clusters. More precisely:

4)

- DEFINITION 1. For given fragmentation kernels F(i,j), we say sto-
chastic shattering occurs if there exists a function ¢(n) such that ¢(n) =
o(n), and exist tg < 00, § > 0 satisfying

[¢(n)]
lim inf P{ Z iX; (i) > én} > 0.
i=1

Let E, be the space obtained from E, by normalizing the mass of
each particle and the coordinates by n, e.g., the kth coordinate becomes
k/n-coordinate and the total mass becomes 1. That is,

n

Ba= {3 Y nli)es 10 € B,

S
n
=1

where {e:} is a new basis and e. means that there is an t-cluster.
n n

Now, let us define the system of scaled fragmentation process Y;" on E,
with generator

O = Y G+ ar) - fo) g+

i+j<n
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for any bounded function defined on E,,, where n € E,,, A= %(ei /nt
€j/n = €(i+4)/n) and F(n) =37, e, 1 F(i,n —1).

The differences between X7* and Y;" are that k-cluster becomes k/n-
cluster and the jump rate F(k) becomes F(k)/F'(n) so that n-cluster is
normalized to 1-cluster and the fragmentation rate of this 1-cluster is
normalized to 1.

DEFINITION 2. For given fragmentation kernels F'(3, j), we say shat-
tering occurs if there exists a function ¢(n) such that ¢(n) = o(n), and
exist tg < 0o, § > 0 satisfying

GO
liminf P{ ) %Y;’;(%) > 51 > 0.
i=1

REMARK. Suppose F'(4, j) are chosen so that 3=, , ., F'(i,7)/F(n) —
a(z), and
J z
Y F(i,k—1i)/F(k) — / b(t|z)dt,
0

g=1

where x = lim,, x o k/n and z = lim,, ;.o j/n. Then Y;" is a discrete,
stochastic approximation of (1). Therefore, the mass located on the o(n)
cluster becomes zero mass in the limit.

From now on, to make the notation simple, we will omit the largest
integer symbol [-] if there is no difference in calculating the asymptotics.
That is, if there is a number which is not an integer form but should be,
then notice that [-] is omitted. For example, in the following Condition
1, en means [en] and in the following Lemma 1, 2'+1 /e is in fact [2!*1/€].

Throughout this paper we assume that F(3,j) satisfy the following
weak scaling property.

CoNDITION 1. There exist €,0 < € < 1/2 and v > 0 such that

Sk F(ik— i)

i=ek

(6) F k) >y

for all k, where F'(k) =}, ;<4 F(i,k — 9).



Sufficient conditions for shattering transition 549

REMARK. This assumption implies that if k-cluster breaks up then
with positive probability it becomes two clusters of size bigger than or
equal to ek. Therefore, it corresponds to the condition of ff b(z|z)dz > v
in (1). This condition excludes the dust evaporation phenomena. For
example, if F(i,k—i) = f(k)6}, where 0 = 1ifa =band 0ifa # b (ie.,
Becker-Déring type fragmentation [3]), it does not satisfy the Condition
1. In this case, any cluster emits only a single particle which is invisible
in the system (o(n) order). Consequently, for some F(k) (e.g., F(k) =
k®, o > 1), a huge cluster, though we can not detect any fragmentation,
reduces its mass as time passes. Obviously, there is no deterministic
counterpart of this phenomenon.

As explained in Section 1, we consider the two cases that

Pky= Y F(i,k—1)

1<i<k—1

is increasing and/or is decreasing. The former implies that the bigger
cluster has a smaller fragmentation rate, and the latter implies the re-
verse.

THEOREM 1. For € > 0, given in Condition 1, let a; = 2! /¢*.
(a) Suppose F(k) is decreasing and there exists M < oo such that

@) 23 e <M

% 1

i
=
Il
=

for all n, then stochastic shattering occurs.
(b) Suppose F'(k) is decreasing and there exists M < oo such that

®) ZZ ;l(aifzi =M

for all n, then shattering occurs.

In the deterministic analogue, n-cluster of the stochastic model is
normalized to 1-cluster. Obviously, a(z) = 1/z® in Section 2 matches
F(k) =1/k% in Y;". In this case we have

COROLLARY 1. If F(k) = 1/k*,a > 1, then shattering occurs.
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REMARK. For special form of b(z|y) (for example, b(z|ly) = (v +
2)zv/y*tl,v > —2), it is known that the phase transition occurs at
a = 0, i.e., shattering occurs if & > 0 but not if @ < 0 [16]. Our result
is weaker than this, however, we relax the condition of b(z|y).

THEOREM 2. Let a; = 21 /et. Suppose F(k) is increasing and there
exist 11(n), ¥2(n) such that ¥;(n)/logn — oo and ¢¥3(n)/logn — oo
asn — oo and

P1(n) P2(n)

(9) ZZFZZ;)SM<OO

=0 =0

for all n. Then stochastic shattering occurs.

COROLLARY 2. If F(k) = k%, a > 1, then stochastic shattering oc-
curs.

3. Proofs

First assume v = 1 in (6) and consider the case that F'(k) is decreas-
ing. Let n; = (1/2)'n and let B! be the set of all configurations whose
maximum cluster size is less than or equal to n, i.e.,

B'={neE": len(z) =n}

for any | > 0 satisfying n; > 1. Note that n,; is decreasing and B!t c B'.

LEMMA 1. For any n € B!, if there are 2'*! /e jumps including clus-
ters of size bigger than n;, 1, then n € B'*1,

Proof. For any n € B!, consider ' which is obtained from 7 through
a fragmentation of a cluster of size bigger than n;. 1, ie., ' =+ A%
for some ¢,7 (¢ < j) such that i+7 > nyy1. Let m = ny1 + 1, then from
(6), since v = 1, we have en;11 <i < %nl = ny41 and

S kn'(k) <D kn(k) —i
k=m k=m
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Since Y .. kn(k) < n, if 7 € E" is obtained from 5 by 2*!/e jumps
including only clusters of size bigger than n;,1, then

ny
Z kii(k) <n—eniy 127 Je =0,

k=m

i.e., there is no cluster of size bigger than n;, ;. Since n € B, S hem
k7i(k) = 0 and therefore 7j € B'*!, : O

Now let us estimate the sum of the rates of fragmentation including
only clusters of size between n;41 and n;. Note that each cluster breaks
up independently of each other. We begin by letting

Klz{kENinl+1<kSnl})

and let

N(m) =D n(k)F(k),

keK!
i.e., the sum of jump rates of  including only clusters of size in K*.
LEMMA 2. For any 7 € B'\ B, \(n) > F(n).

Proof. It is clear from the fact that F'(k) is decreasing and there exists
ko € K! such that n(kg) > 1. O

For any 1 € B!, let 75(n) be the first time that X is in B'*! given
Xy =n,ie,

7h(n) = inf{t > 0: X7 € B Xp =n}.

LEMMA 3. For any n € B!\ B!, we have

(10) Brhn) < g

Proof. The proof will be done by using the comparison method in-
troduced in Section 1. Let 4 = F(n;) and let Y; be a Poisson process
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with jump intensity p. Assume X§ = 7 and define {T%}, the jump time
of X including only clusters of size in K*, successively by
TO = Oa

inf{t > 0: X 1v0)- (m) # X{r, _,+)(m) for some m € K%}

: n l +1
if X7 €B'\B
0 ifXp €B",
To—

1

T,

where Ty, =Ty + To + -~ + T}, and X = lim,_,,~ X? (note that with
probability 1, the limit exists) and the infimum of an empty set is co
by convention. Note that if X%c € B! then T;=0forall j > k+1.

Clearly, we have
() =Ti + T2+ + oy

from Lemma 1. Indeed, we know that before making 2* /¢ jumps X7 €
Bl ie, T; =0 for all j > 2!/e.
Now, define {T},}, the jump time of ¥;* successively by

T =0,
Ty =inf{t > 0:Y(g,_ 40~ # YDo_140) }-

Then T}’s are iid and exponential random variables with parameter p.
Since if X € B'\ B'*!, then by Lemma 2 the total jump rate including
only clusters of size in K' is greater than or equal to p, T}k is stochas-
tically dominated by T}, for k = 1,2,---. Therefore, the expectation of
75(n) can be estimated by

Etp(n) = E(Ti +To + - + Ty

(11) SEM+T+ - +Tyy)
< 2'/eE(T))
9l
- eF(n;)’
and we are done. O

Recall € given in (6), and let A! be the set of all configurations whose
maximum cluster size is less than or equal to €'n, i.e.,

12

A={neE,: Zm(z) =n}.
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Note that A1 ¢ A! for any [ satisfying e'n > 1.
For any n € A°, let

() = inf{t > 0: X7 € A'[XF =},

and let [y be the largest integer satisfying ny, > en, ie., (1/2)° > e.
Recall n; = (1/2)!n.

LEMMA 4. For any n € A°,

1. 2
(12) ETa(n) < < Z Flr)

Proof. Since ny,+, < en, Blo+! C Al. Therefore

Tg(n) =inf{t >0: X[ € A1|X6Z =n}
< inf{t > 0: X € Bt X7 =n}
< 13(no) + H(m) + -+ T ()

for some 7; € B!, 1 =0,1,--- ,ly. From Lemma 3,

€
=0 =0

o 1, o
ErS(n) <Y Er! < —_
TA(U) = Z TB(nl) = Z EF(nl),
as desired.
Now let us consider the general case. For any n € A*\ A}, let

Th(n) = inf{t > 0: XJ € A" X7 = n},

i.e., the first time that X}* has maximum cluster size less than or equal
to €*1ln, given initial maximum cluster size between €tn + 1 and €'n.

LEMMA 5.

l
, 1 & 2
. < — E - .
(13) ETA(T’) = gtl s F(e’nl)
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Proof. The worst case is that X7 = 1/e‘e.,, ie., there are 1/¢*
amount of €'n clusters. In fact, using the largest integer function, we
can express X{ rigorously by

But, since the final term is ignorable, there is no difference in the estima-
tion. Now for each cluster of size €'n, since it fragments independently
of others, we see easily
. 1,
i) < 3
where 7¢ is the first time X € A**!, assuming that X is given by a
single cluster of size e'n and all others are just single particles, i.e.,
P =inf{t>0: X! € ATNXT =eqip + (1 - ei)nei}.
By the similar way of Lemmas 1 and 3, we make blocks B!, such that

CiTLl
B'={n€kE,: an(k) =n},
k=1
and let
Té—g =inf{t > 0: X! € BHYX} = e.in, + (n— €'my)er },

i.e., the first time that X7 is in B*+! given X7 has one e'n-cluster and
all others are just single particles. Note that in this case X € B!t
Then (10) in Lemma 3 is generalized to

! 2
Er-. < -
B = eF(einy)
By the same way of Lemma 4, with the same [,
(14) Er* <) ErL < - -
— € & F(etng)
Therefore,
lo 1
: 1. 1 2
ETt < =7 < = .
(15) A < 57 < 3 D Fam



Sufficient conditions for shattering transition 555
and we are done. (]

Let ¢(n) be a function such that ¢(n) = o(n) and monotone increasing
and lim, o ¢(n) = co. Let

é(n)

A={77€E":Zin(i)=n},

i=1
i.e., the maximum cluster size is less than or equal to ¢(n), and let T™
be the first time that X7 is in A, initially given a single n-cluster, i.e.,

T =inf{t > 0: X]' € A|X] =en}.

Our aim is to show that with positive probability, 7" < M for some
constant M which does not depend on n. This obviously can be in-
terpreted, for large n, the initially given n-cluster fragments into small
clusters of order less than n in finite time, i.e., shattering occurs.

LEMMA 6. Let iy be the first number such that e¢*n < ¢(n), ie.,
1o < log, @, then

io lo

2l
(16) ET" <) > sy

=0 [=0

Proof. 1t is an easy consequence of Lemma 5;

ig i lo 1
n 7 2
an BI" < 2 BTas D0 Gopamy)
i= =0 [=0

and we are done. O

Proof of Theorem 1. For any 0 < v < 1, since (6) implies

k/2
(18) > Fli,k —i)F(k) 2 vF(k)

i=ek

for large k, the only difference is that -y is multiplied to the jump rates
in the previous lemmas. We can ignore any fragmentation which makes
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clusters of size less than or equal to ek, since such fragmentation makes
the speed of the process faster. Therefore,

10
ET" <Y Z EHWF(G%

i=0 =0

(19) < ZZ €z+17F(Eznl)

i=0 I=0
M
S _
ey
for all n. Now let tg = 2M /ey, then

[6(n)]
P{Y  iXp(i) =n} = P{X} € A} = P{T" < to} >

N =

since E(T™) > to/2. Therefore, stochastic shattering occurs.
Now for part (b), the only difference is that the term F(n) is multi-
plied in (16). O

REMARK. As we see in the proof, the fragmentation do not have to
be binary. The only important condition is (6) and we can apply the
same method for multiple fragmentation to approximate b(z|z).

Proof of Corollary 1. Note that F(k) = 1/k%, o > 1, is monotone
decreasing, and we have

(20)
1 a-1 1 l
= —-— € —_—
< 00.
Therefore F(k) meets the condition (b) of Theorem 1. O

Proof of Theorem 2. In the above lemmas, the only difference is the
estimation of jump rates on each block. For example, in Lemma 2,
A(n) > F(n;41) and in Lemma 3

2l 2l+1
eF(ni1)  2eF(nupr)

Eth(n) <
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Consequently, since Iy and i are of the order of logn, (19) corresponds

to
¥1(n) P2(n)

; Z 267F(a n) <M

for some M’ < o0. 0

Proof of Corollary 2. Note that F(k) = k*, a > 1, is monotone increas-
ing, and we have

P1(n) 11122(%) ail 1 p1(n) 2(n) 1
(21) Z i < (")a Z a—1
i=0 1=0 F(aun) NS0 =0 G
1 P1(n) P2 (n) 1
< (2@ a—1\2 I+1
<Y @Y )
i=0 1=0
<M
for some M’ if o > 1. O
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