J. Korean Math. Soc. 39 (2002), No. 4, pp. 559-577

NEW RESULTS ON STABILITY
PROPERTIES FOR THE FEYNMAN
INTEGRAL VIA ADDITIVE FUNCTIONALS

JuNG-AH LM

ABSTRACT. It is known that the analytic operator-valued Feynman
integral exists for some “potentials” which are so singular that they
must be given by measures rather than by functions. Correspond-
ing stability results involving monotonicity assumptions have been
established by the author and others. Here in our main theorem we
prove further stability theorem without monotonicity requirements.

1. Introduction

Consider the function
(1) Fi(w) = e 4 @),

where A}(-) is the additive functional corresponding to an appropriate
measure p. This function can be considered as a generalization of the
function

(2) FY (w) = e~ o Viu) s,

where V is a potential.

In [1], the definition of the analytic operator-valued Feynman integral
was extended to the function (1) (Actually, 4 can be a potential which
is too singular to be given by a function) and existence theorems for
the analytic operator-valued Feynman integral of the function (1) were
proved under appropriate conditions on the measures involved by making
use of Dirichlet forms and Markov processes. These results enlarged the
existence theory for the analytic operator-valued Feynman integral.
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Extensions of the existence theory raise questions as to the possibility
of extending the stability theory from [12] which was inspired by [18].
The study of stability theorems for the Feynman integral where poten-
tials are given by a class of signed smooth measures rather than ordinary
potentials was initiated in [6] and extended in [19]. Because of the diffi-
culties of dealing with convergence of forms corresponding to measures
instead of potential functions, monotonicity assumptions played an im-
portant role in [6] and [19]. It has been a long standing desire for the
author to get rid of the monotonicity assumptions in [6] and [19]. Pur-
suing this goal, we prove Theorem 25 below, which is related in spirit to
Theorem 3.6 in [19] but the nature of the monotonicity is reversed. Our
main result is Theorem 30 which involves no monotonicity assumption
and has Theorem 3.6 in [19] as its corollary. The results of the present
paper depend on arguments which are rather different than those in [6]
and [19] and at the end of this paper we analyze the relationship be-
tween the dominated convergence theorem from [18] (See also [15]) and
Theorem 30.

2. Additive functionals, generalized Kato class measures,
smooth measures and the Feynman-Kac formula

Our primary goal in this paper is to develop stability properties for
the Feynman integral determined by signed smooth measures. In order
to obtain these results in Section 5, we need to review definitions and
key results related to positive continuous additive functionals, measures
in the generalized Kato class, smooth measures, closed forms and their
associated operators.

Generalized Kato class measures were considered in connection with
Schrodinger semigroups [24] and Feynman-Kac formulae and the concept
of smooth measures was introduced by M. Fukushima in the description
of the class of Revuz measures associated with positive continuous ad-
ditive functionals in the Dirichlet space setting [9].

Recently, the theory of additive functionals in the framework of Dirich-
let forms has been shown to be powerful in the study of Schrédinger
operators H* = —%A + u (u is an appropriate measure) and the related
semigroups [2-4]. The correspondence between generalized Kato class
measures and PCAF’s (that is, piecewise continuous additive function-
als) was studied in [4] and the correspondence between smooth mea-
sures and PCAF’s was studied in [9]. As a result of Theorem 5.1.3 in
[9] we have the special function (1) associated with a smooth measure
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1 and this relationship is the first bridge which enables us to deal with
the Feynman integral via additive functionals determined by smooth
measures. Many valuable results concerned with generalized Kato class
measures and smooth measures can be found in [2-4].

Let H'(R?) be the standard Sobolev space, i.e.,

HY(RY = {u € Ly(R, m)| % € Ly(R%,m),1 <i<d},

where Lo(R%,m) denotes the space of R-valued functions on R? which
are square integrable with respect to Lebesgue measure m and the
derivatives are taken in the distributional sense. Throughout this paper,
we write Lo(R?) instead of Ly(R?%, m). For a form q and an operator H,
D(q) and D(H) stand for the domains of ¢ and H, respectively. We let
& denote the classical Dirichlet form, that is, the bilinear form acting on
D(&) = HY(RY) :

1
E(u,v) = 3 ) Vu-Vvdm

and for u,v € D(£), we define

Sl(u,v)zé/ Vu-Vvdm+/ uvdm.
R4 R4

We now give the definitions of capacity, smooth measure and gener-
alized Kato class measure; see [1] for more detailed discussions about
these subjects.

DEFINITION 1. Given an open set G C R4, let
Cap (@) = inf{& (u,u) |u € H (R and u > la.e. onG}.
For an arbitrary set A C R%, let
Cap (A) = inf{Cap(G)| A € G C R%,G is open}.

DEFINITION 2. A positive Borel measure i on R® is called smooth if x
charges no set of zero capacity and if there exists an increasing sequence
{F,} of compact sets such that

w(F,) <ooforn>1

and
lim Cap (K — F,,) = 0 for any compact set K C R%.
n—oo
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We shall denote by S the family of all smooth measures and by S, the
family of all o-finite smooth measures.

We show in the following lemma that every smooth measure defined
on R% as in Definition 2 above is a o-finite measure. We are concerned
with this issue because the existence theorems in [1] were developed
under the assumption of the o-finiteness of the positive and negative
variations of a generalized signed smooth measure; that is, they assumed
that u = put — p~ is a generalized signed measure and that both x4 and
p~ are in S,. (See p.271 and p.289 in [1]). It was observed but not
proved in [1, Remark, p.284] that u(R® — %JFn) = 0 where p is a smooth

measure again as in Definition 2 above and {F,} is the corresponding
sequence of compact sets with respect to u. We prove this fact here from
which it easily follows that any smooth measure is o-finite. The proof
is not difficult but we have not seen this fact before and so it may be
unknown to other readers.

LEMMA 3. Every smooth measure defined on R? is a o-finite measure.

Proof. Let u be a smooth measure. Then there exists an increasing
sequence {F,} of compact sets such that u(F,) < oo for each n € N.
The crucial part of this proof is to show that Cap(R¢ — UF,) = 0.

n

To prove this fact, let R% = 7L7J1Am where A,, = 1;[[—m,m] for each
m € N. Then Cap (Rd—L#Fn) = Cap [TLrJL(Am - (%Fn))] = sup Cap [Am—
(UF,)] using a property of capacity (See Theorem 3.3.1 in [1]). And
sgp Cap[Am — (JFn)] = supCap[(\(Am — Fn)] < supinf Cap (Am —
F,) = sup lirlln Cap(Am — F,). By the definition of smooth measure,
lim Cap &m — F,) = 0, for each m € N and this implies Cap (R? —
UnFn) = 0. On the other hand, we have u(R? — UF,,) = 0 since u charges
;o set of zero capacity. Now let G,,, = Fi, J (R* — UF;,). Then we
conclude that ’ILYJLGm = R% and u(G,,) < oo for each mnE N,ie, pis a

o-finite measure. O

One implication of the preceding lemma is that the assumption of
o-finiteness in the paper [19] is redundant and so can be eliminated.
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DEFINITION 4. A positive Borel measure y on R% is said to be in the
generalized Kato class if

lim sup/ M:o, d>3,
I

o—0% ycRd z—y|<a |.'IJ - y|d_2

lim sup [ (loglo—y|p(dy) =0, d=2,
a0t ycpd le—y|<a

sup/ pldy) <o, d=1.

z€Rd J|z—y|<1

We denote by GKj the generalized Kato class.

Using Lemma 3, Theorem 2.1 in [3] and the fact that every measure
1 in the generalized Kato class is a Radon measure; i.e. u(K) < oo for
all compact sets K, we have the following proposition.

PROPOSITION 5. GKy C S, = S.

Next, we turn to the definition of positive continuous additive func-
tional which will be abbreviated by PCAF for convenience. Let (2, F,
Fi, X, P;) be the canonical Brownian motion on R® [5]. Let ¢ be a
nonnegative real number. For each w in Q = C([0,00), R?%), the collec-
tion of all continuous functions from [0,00) to R?, we define a function
fiw : [0,00) — R¢ by (,w)(s) = w(t + s) for all s € [0, 00).

DEFINITION 6. A function A : [0,00) xQ — R is called a PCAF in the
classical sense if A(t,-) = A; is Fi-measurable for each t and there exists
A € F (called a defining set of A) satisfying the following properties:

1. P,(A) =1 for all z € R%

2. Qsw € A for all w € A.

3. For each w € A, the function A.(w) : [0,00) — R is continuous,

increasing and vanishes at 0 and is additive in the sense that

A,H_s(w) = A, (w) + Ag (Gtw)
for all £,5 > 0.

For a nonnegative bounded Borel measurable function V on R%, we
consider a function AV defined on [0,00) x Q by

AV (t,w) = /V
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for all (t,w) in [0, 00) x Q. This is a typical example of a positive contin-
uous additive functional and we are familiar with the following function
appearing in the classical Feynman-Kac formula:

FY (w) = e~ Jo V() ds
In the present paper, we are interested in the following function
Fl(w) = e~ 4 @),

where the additive functional A}'(-) replaces fot V(w(s))ds and an ap-
propriate measure u replaces the potential V. :

Now we have a generalized definition of PCAF made by M. Fukushima
which extends the notion of a PCAF in the classical sense.

DEFINITION 7. A function A : [0,00) x @ — R is called a PCAF in
Fukushima’s sense if A(t,-) = A; is F;-measurable for each ¢t > 0 and
there exist A € F and N € B(R?) satisfying the following properties:

1. P,(A) =1 for all z € R — N, where Cap (N) = 0.

2. w € A for all weA.

3. For each w € A, the function A.(w) : [0,00) — R is continuous,

increasing and vanishes at 0 and is additive in the sense that

AH.S(CU) = At(w) + As(etw)

for all t,s > 0.
A is called a defining set of A, and N is called an exceptional set of A.

In the rest of this section we investigate various properties of closed
forms corresponding to signed smooth measures. For a signed Borel
measure 4 = p+ — pu~ on R? (where ut and p~ are the usual positive
and negative variations of u, respectively), we write p € S — GKy if
put € S and p= € GK4 and p is called a signed smooth measure. For
u €8S —GKg4, we define Q,, and &, as follows:

Qulu,v) = / uvdu = / wodpt — / uv dp”
Rd R4 Rd
for all u,v € D(Q,) = La(R%, |u|) N La(R?) and

Eulu,v) = E(u,v) + Qulu,v)
for all u,v € D(€,) = D(€) N D(Q,).
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For p € S —GKy, let A*" be the PCAF in Fukushima’s sense corre-
sponding to u* and A* be the PCAF in the classical sense correspond-
ing to . (The existence of AF" and A*” are guaranteed by [1, Theorem

3.3.10] and [1, Theorem 3.2.3], respectively). We let A} = Aéﬁ — A
Then (A})¢>0 is a continuous additive functional in Fukushima’s sense
which has finite variation on every bounded interval [9]. Let us introduce
the notation

__AH
(3) pif(e) = Egle ™) f(w(t)]
provided that the right-hand side in (3) makes sense for f € Lo(R%)
where F; stands for the expectation with respect to P, and P, is the
probability measure associated with the Brownian paths in R? which
start at = at time 0.

Let H be a real or complex Hilbert space equipped with the inner
product (,) and the norm ||-||. From [16], we have the following theorem.

THEOREM 8. Let q be a densely defined, symmetric closed form in
‘H which is bounded below by ~. Then there exists a unique bounded
below self-adjoint operator H satisfying that for any £ < «, D(q) =
D((H — £)2) and q(u,v) = ((H — &)7u,(H ~ £)3v) + £(u,v), for all
u,v € D(q). Furthermore, q(u,v) = (Hu,v) for all u € D(H),v € D(g).

From [1, Proposition 3.4.7 and Theorem 3.4.8] and [2, Theorem 4.3],
we have the following proposition. We have abridged and rephrased the
existing results for the convenience of the reader.

PROPOSITION 9. Let = pt —u~ € S — GK,. Then

1. £, is a densely defined symmetric bilinear form.

2. &, Is closed and bounded below.

3. (P¥)i>0 is a strongly continuous symmetric semigroup on La(R?).
Moreover, let H* be the bounded below self-adjoint operator correspond-
ing to (£,,D(E,)) whose existence is guaranteed by Theorem 8, ie.

HY = —%A + u, the form sum of —%A and p with domain dense in
Ly(R%), and let H* be the infinitesimal generator of (p});>o. Then
H* = —H»

and hence we have
(4) pif(z) = e " f(a)
for all f € Ly(RY).
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REMARK 10. By (3) and (4), we obtain the Feynman-Kac formula
e f(2) = Bole @ f(w(®))]

for every f € Lo(R%), m — a.e. x € R, and for all t > 0.

Now we extend £, to the subspace D(ES) = D(€,) +iD(&,) of
Ly(R%,C) = Ly(R*) + iLy(R%) where i = /—1.
Define SE : D(EE) — C by

ES (u,v) = Vu-—V—vdm+/ u¥ dp
Rd Rd
for all u,v € D(ET).
The following propositions come from [1]. Proposition 11 describes
the relationship between SE and &, and Proposition 12 shows how a
natural extention SE of £, preserves the key properties of £,.

PropPOSITION 11. Let p € S — GK4. Then for u = u1 + iug,v =
vy + ivg € D(Sf), EE is represented as follows:

(5) Eg(u,v) = gﬂ(ul,'lh) + gu(UQ,’Uz) + 'L.[g#(UQ,’Ul) — Su(ul, ’vz)] .

PROPOSITION 12. Let u=u*t — u~ € S — GK4. Then

1. EE is a densely defined symmetric sesquilinear form.
2. SE is bounded below and closed.

Moreover, let Hf. be the bounded below self-adjoint operator corre-
sponding to (SE, D(EE)) whose existence is guaranteed by Theorem 8,
ie Hf = —%A + p, the form sum o —%A and p with domain dense in
Ly(R%,C). Then we obtain the following Feynman-Kac formula in the
complex setting

(e™H5u)(z) = Exle™ @u(w(t))]

for every u € Lo(R%,C), m — a.e. x € R, and for all t > 0.
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3. The existence of the analytic in time operator-valued
Feynman integral

We are now ready to introduce the definition and the existence theo-
rem for the analytic (in time) operator-valued Feynman integral of func-
tions in which we are especially interested. Given w € Q = C([0, 00), RY),
let

Ff(w) = FHw) = 4,

where 4 is a signed smooth measure and A} is given in Section 2. Let
C,Cy and C. be the set of all complex numbers, all complex numbers
with positive real part and all nonzero complex numbers with nonnega-
tive real part, respectively.

DEFINITION 13. Given t > 0, u € Ly(R?% C) and =z € R?, consider
the expression

(JHFMu) (@) = Eufe 4 @u(u(t)))
(6) = [ e dPaw),

where 2, is the set of w € C([0,00), R?) such that w(0) = x and P,
is the probability measure associated with the Brownian paths in R%
which start at = at time 0. We say that the operator-valued function
space integral J*(F*) exists for ¢ > 0 if (6) defines J*(F*) as an element
of L(Ly(R%, C)), the space of bounded linear operators on Ly(RY,C).
If J*(F*) exists for every t > 0 and, in addition, has an extension as
a function of ¢ to an analytic operator-valued function on C,, and a
strongly continuous function on C, we say that J(F*) exists for all
t € C.. When t is purely imaginary, Jt(F*) is called the analytic (in
time) operator-valued Feynman integral of F*.

The following theorem comes from [1]. In their elaborate paper [1],
they obtained existence theorems for the analytic (in time) operator-
valued Feynman integral more general than what follows. We just state
the following one which is sufficient to pursue our purpose. We refer to
[19] for a sketch of its proof.

THEOREM 14. Let p = pt — p~ € 8 — GKy and let SE be given
in Section 2. Let Hf, be the self-adjoint operator corresponding to
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(SE,D(SE)). Then J'(F*) exists for all t € C, and has the repre-
sentation

JHF) = e tHe
for all t € C , where e *H¢ is given meaning via the Spectral Theorem
applied to the self-adjoint operator HS,. In particular, for t € R, the
analytic in time operator-valued Feynman integral J*(F*) exists and
we have

Jit(Fu) — e—itHg’
where {e‘itHg‘, t € R} is the unitary group corresponding to the self-
adjoint operator HF,.

4. Perturbation of closed forms

This section will be mainly devoted to an introduction of two im-
portant perturbation theorems for closed forms important perturbation
theorems for closed forms (Theorem 17 and (Theorem17 and Theorem
18) which will play crucial roles in Section 5. From now on, let H denote
a complex Hilbert space with the inner product (, ) and the norm || - |-
For z,,x € H, let z, — x denote that z, is strongly convergent to z,
and for operators A,, A on H, let A, — A indicate that A, converges
to A in the strong operator topology.

DEFINITION 15. Let A, A,,,m = 1,2,--- be self-adjoint operators on
H. We say that {A,,}>°_; converges to A in the strong resolvent sense
if

[I+iAn]"t — [I+iA]7D,
where I denotes the identity operator and i = /—1.

From [17], we have the following theorem.

THEOREM 16. (Trotter, Kato, Rellich, Neveu) Let H, H,,, m =
1,2,--- be self-adjoint operators on H. Then the following statements
are equivalent:

1. {Hp,}>_, converges to H in the strong resolvent sense.

2. e~ Hm _, e=#H for a]l ¢ in R.

8. [[+iAHm|™' — [I+4iXH]| ! forall \in R, A #0.

4. e"#Hm s e=®H ypiformly in t on any compact subset of R.
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If, in addition, the operators H,, and H are uniformly bounded be-
low, then number 1 in the above implies:

e tHm _, e7tH ypiformly in t on any compact subset of [0, 4+00).

The following monotone convergence theorem for closed forms is due
to B. Simon (23] who refined a previously existing result of Kato using a
canonical decomposition for any quadratic form that is bounded below.

THEOREM 17. Let hg,hi,hs,---, be closed, densely defined, and
bounded below forms on H. Suppose that

hi <hg <--- < hy.
Let D(hoo) = {u € ND(hy) | sup hp(u, u) < co} with

hoo(u,v) = lim hy(u,v).
n—o0

Then hy is a densely defined closed form and H,, converges to H in
the strong resolvent sense, where H,, and H are self-adjoint operators
associated with hy, and h, respectively.

Now we will provide a perturbation theorem for closed forms that
are bounded below, which was originally proved under the more general
condition that the forms were closed and sectorial in H [16, Theorem
3.6, p.455].

THEOREM 18. Let t, t,, n = 1,2,--- be densely defined, bounded
below, and closed forms in 'H satisfying the following properties:

1. D(t,) C D(t), n=1,2,---.

2. to(u,u) > t{u,u) forallu e D(t,), n=1,2,---.

3. There is a form core D of t such that D C liminf D(¢,) and

lim t,(u,u) =t(u,u) forallue D.

Then H,, converges to H in the strong resolvent sense, where H,, and H
are self-adjoint operators associated with t, and t, respectively.

We finish this section by stating some basic results related to semi-
bounded (i.e. bounded below) forms to help the reader get more under-
standing about our proof in Section 5. When a form ¢ in H, which is
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bounded below by «, is given, we define a pre-Hilbert space under the
inner product defined by

(u, )¢ = t(u,v) + (1 —a){u,v), u,v € D(t).
We denote by || - ||¢ the norm induced by (, );.

DEFINITION 19. Let ¢ be a symmetric form in H. A sequence {uy}
of vectors will be said to be t-convergent to u € H, in symbol u, S U

as n — oo, if up € D(t), up, — u and t(u, — upy) — 0 as m,n — oo.

REMARK 20. Let t be a symmetric form in H. It is easy to prove the
following facts.

1. t is closed if and only if uy, S u implies that u € D(t) and t(u, —

u) — 0 as n — oo.
2. up, € D(¢) and ||u, — ulls — 0 as n — oo implies that wu, - .

THEOREM 21. Let t be a semibounded form in ‘H. If u, - u and
Un 2, then lim t(u,,v,) exists. In particular, this limit is equal to
n—o0

t(u,v) when t is closed.

5. Stability properties for the Feynman integral

In order to develop our main results in this section, the only thing
left is to scrutinize possible form cores. The importance of having form
cores should be clear, because forms in many applications are given only
on some dense subset rather than the whole domain.

In general, a smooth measure may not be a Radon measure. Even
worse, if i is a nowhere Radon smooth measure, then it may happen
that D(€,) contains no non-trivial continuous functions. Thus when we
deal with a smooth measure u it is necessary to find a relatively nice
form core for a closed form &,. To this end we start from the notion of
quasi everywhere, which will be abbreviated by q.e. from now on.

DEFINITION 22. Let A be a subset of R%. A statement depending
on z € A is said to hold q.e. on A if there exists a set N C A of zero
capacity such that the statement is true for every z € A — N.
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DEFINITION 23. Let u be a function defined q.e. on RY. We call u
quasi-continuous if there exists for any € > 0 an open set G C R? such
that Cap (G) < € and u|ga_c is continuous. Here u|ga_ denotes the

restriction of u to R? — G.

Let us define a class of functions C, (R?) as follows:

C, (R%) = {f| f is bounded, Borel measurable,
q

quasi-continuous and has compact support}.

PROPOSITION 24. Let u € S —GKy. Then D(E,)NCy (R?) is a form
core of £,. Moreover, H'(R?) N C, (RY) is a form core of £, when p™ is
a Radon measure.

Proof. We already knew that D(E,)NC, (R?) = H(R)NLa(RY, |u))N
C, (R%) is a form core of &,. (See [19, Proposition 3.5]). It is easy to
prove that C, (R?) is a subset of Lo(R%,|u|) when p* is a Radon mea-
sure. O

We are now in a position to prove our main theorems. Theorem 25
is concerned with convergence from below and this is the counterpart of
Theorem 3.6 in [19] which dealt with convergence from above. In The-
orem 3.6 in [19], the limiting measure y was given and the assumption
was made that p should be a signed measure. In case of Theorem 25
in this paper, only the sequence {u,} is given and the limiting measure
u, on which no assumption is made, is constructed. For the proof of
Theorem 25, we use an operator theoretic method instead of the more
concrete real analytic method which was used for the proof of Theorem
3.6 in [19)].

THEOREM 25. Let pin,,n = 1,2, --- be signed measures on (R%, B(R%))
satisfying the following properties:

1. For each E € B(R®),{un(E)}%, and {u;(E)}22, are nonde-
creasing sequences.
2. There exist finite measures v and 1 such that

ph SveS , p, <neGKy
for allm € N.
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Let u = supp;t — supu,,. For convenience, let t, = SE; and t = SE
n n

where £S and EC are given in Section 2. Then {H,}2; converges to H
in the strong resolvent sense where H,, and H are self-adjoint operators
associated with t,, and t, respectively.

REMARK 26. Using hypothesis 1 in the above theorem, we get
{u+(E)}, is a nondecreasing sequence for each E € B(R?). Then
the definitions of GK4 and S and the hypothesis 2 together imply that
for all n € N, p,, is a finite signed measure which belongs to S — GKj.

REMARK 27. By virtue of the Vitali-Hahn-Sak’s theorem, sup y;f and

n
sup u,, are finite measures. A simple proof shows that the set function
deﬁned by p = sup,un — sup,un is a finite signed measure which belongs

to S — GKj. Moreover ,u is the limiting measure, i.e. p,(E) — u(F)
for each E € B(R%).

Proof of Theorem 25. For each n € N, t,, is a densely defined closed
form which is bounded below by Remark 26 and Proposition 12. A
direct calculation shows that {t,}nen is a nondecreasing sequence of
forms which is bounded by to = £C. Define a form

(7) Q(f»f):nli_lfolotn(faf):SuPtn(f,f)

for all f € D(q) = {f € ﬂD(tn)lsupt (f,f) < oo}. By virtue of

Theorem 17, ¢ is a densely defined closed form and H,, converges to H
in the strong resolvent sense where H, and H are self-adjoint operators
associated with %, and ¢, respectively. So if we can show ¢ = t, our proof
will be done.

We claim that ¢ = t. Note that we have a form core D' = D + iD
of t where D = H'(R?) N C,(R?) by Remark 27 and Proposition 24.
Moreover, we can show that D' C D(g) C D(t) using

(8) / |g|? d(supp;l) = sup f lg|® dut
n n
and

(9) / 1912 d(supp;) = sup / o/ dpiz
n V(2
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forallg € QD(SM). Actually (8) and (9) are true because of the iterated

limit theorem for a double sequence. Now let f € D(t). Noting that D’
is a form core of t, we get a sequence {f,} in D’ such that || fm — ||t —
0 as m — oo. This implies that f,, - f by Remark 20. It is not

difficult to show that g(h,h) = t(h,h) for all h € D'. Using this fact
we can prove that f,, — f. In fact, f,, — f, fm € D' C D(q) and
q

q(fm — fx) = t(fmm — fr) — 0 as m,k — oo. Since ¢ is closed, we see
f € D(q) by Remark 20. Eventually we conclude that D(t) = D(q).

Furthermore, t(fm, fm) = ¢(fm, fm) implies that t(f, f) = q(f, f) in the
light of Theorem 21. O

We have the following two corollaries which are stability theorems for
the analytic (in time) operator-valued Feynman integral.

COROLLARY 28. Under the same conditions as in Theorem 25,
(10) JH(FHn) — JH(FH)
for all t € R in the strong operator topology.
Proof. In the light of Theorem 14, we get
Jit(F;Ln) — e~ HE"  and Jit(F/_L) - e—itHg,,
where H/" and H}, are self-adjoint operators associated with £, and
EE , respectively. By Theorem 25 and Theorem 16, we get (10). a

COROLLARY 29. Assume the same hypotheses as in Theorem 25 and
assume
fa— f in La(R%C).
Then for allt € R,
JEEFFY f, — JYHFR)f in La(R%,C).

Stability theorems for the Feynman integral where ordinary poten-
tials are considered rather than measures can be found in [18 and 11-
15). Monotonicity is not assumed in any of these results. On the other
hand, monotonicity is an important assumption in [6 and 19]. It is
desirable to obtain a stability theorem for the Feynman integral with-
out the monotone condition. In this sense, the following theorem is a
substantial improvement of Theorem 3.6 in [19]. In fact, {un(E)} and
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{u,; (E)} were nonincreasing sequences and the forms corresponding to
tn, were uniformly bounded in Theorem 3.6 in [19]. These conditions
are replaced in our next theorem by the simple assumption that the
sequences {un(E)} and {u, (E)} are bounded below.

THEOREM 30. Let u, i, n =1, 2, --- be signed measures on (R¢,

B(R?)) satisfying the following properties:
1. For each E € B(R%), un(E) — u(E) as n — oo, where
pn(E) 2 w(E) pp (E) 2 p(E).
2. There exist Radon measure v and a measure 1 such that
pt <ves , p,<neGKy

for allm € N.
For convenience, let t, = 8,?; and t = SE where 85; and Sf are given in
Section 2. Then {H,}S2, converges to H in the strong resolvent sense
where H, and H are self-adjoint operators associated with t, and t,
respectively.

Proof. Since u, € S — GKy, for each n € N,t, is a densely defined
closed form which is bounded below by Proposition 12. It is not difficult
to show that p = u* — u~ € § — GKj using hypotheses 1 and 2. Hence
t is a densely defined closed form which is bounded below. Moreover,
we can prove that D(t,) C D(t) for each n € N and t,(u,u) > t(u,u)
for all uw € D(t,),n =1,2,---. Now let D = H'(R%) N C,(R?%). Noting
that u = p* — u~ € § — GK,4 and u* is a Radon measure, we see that
D' =D + 14D is a form core of ¢t by Proposition 24. On the other hand,
D’ is a form core of t, for each n € N. Let f = g +ih € D'. We claim
that nlingo tn(f, f) = t(f, f). For this, it is sufficient to show that

(11) lim/lglzdun=/lgl2du
n—o0

and

(12) lim / |h|2dyn=/ B2 dp.
n—o0

It is not difficult to show (11) because g is bounded with compact sup-
port. By essentially the same method as in the proof of (11) we can
prove (12). Hence by virtue of Theorem 18 we conclude that {H,,} con-
verges to H in the strong resolvent sense where H,, and H are self-adjoint
operators associated with ¢, and ¢, respectively. O
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Here, as in Corollary 28 and Corollary 29, the strong resolvent conver-
gence in the conclusion of Theorem 30 immediately yields the stability
theorems for the analytic (in time) operator-valued Feynman integral.
Finally we can show that Theorem 3.6 in [19] is a corollary of Theorem
30.

COROLLARY 31. Let i, ftn, n =1, 2, --- be signed measures on (R?,
B(R?)) satisfying the following properties:

1. For each E € B(RY), un(E) — u(E) asn — oo where {u,(E) 12,
{1, (E)}S2., are nonincreasing sequences.
2. There exist Radon measure v and a measure n such that

MZSVGS y Hp <neEGKy
for allm € N.

For simplicity, let t, = Eﬁ; and t = SE where éfn and SE are given
in Section 2. Assume that t, is uniformly bounded by o < 0. Then
{Hn}22, converges to H in the strong resolvent sense where H,, and H
are self-adjoint operators associated with t,, and t, respectively.

Proof. Let E € B(R®). By hypothesis 1, we get p,,(E) — inf u,(E) =
w(E) and p = pt — p~ = inf g} — inf u;. On the other hand, we can
prove inf u and inf u;, are positive measures using the Vitali-Hahn-
Sak’s theorem. Now we conclude that pn(E) > inf{u,(E)} = p(E)
and p, (E) > inf{u, (E)} > p~(E). Then the conclusion follows from
Theorem 30. a

REMARK 32. In [18], Lapidus proved a dominated convergence the-
orem for the modified Feynman integral involving ordinary potentials,
that is, potentials given by functions. A slight improvement (also due
to Lapidus) of this result is presented in [15]. When restricted to po-
tentials given by functions, the conditions in Lapidus’ result in [15] are
more general than our result in the following sense: If v = |f| -m € S
(where m is Lebesgue measure) is a Radon measure then f € L} (R%)
and 7 = |g| -m € GKjy if and only if g € K4 (where K is the class of all
Kato functions), where v and 7 are the dominating measures in Theo-
rem 30. Also Theorem 30 has a bounded below condition for converging
measures. However, the result here (i.e., Theorem 30) applies to many
potentials which are not given by functions. (See examples in [1, pp.
285-286]).



576 Jung-Ah Lim

ACKNOWLEDGEMENT. This paper was supported by Post-Doctoral
Fellowship, Korean Science and Engineering foundation in 1997 and I
am very grateful to professor Gerald Johnson for his valuable comments
and hospitality during my visiting the Mathematics department of the
University of Nebraska-Lincoln.

References

[1] S. Albeverio, G. W. Johnson, and Z. M. Ma, The analytic operator-valued Feyn-
man integral via additive functionals of Brownian motion, Acta Appl. Math. 42
(1996), 267-295.

[2] S. Albeverio and Z. M. Ma, Perturbation of Dirichlet forms, J. Funct. Anal. 199
(1991), 332-356.

[3] Ph. Blanchard and Z. M. Ma, Semigroup of Schrédinger operators with potentials
given by Radon measures, Stochastic processes, physics and geometry (Ascona
and Locamo, 1988), 160-195, World Sci. Publishing. Teaneck, NJ. 1990.

, New results on the Schrédinger semigroups with potentials given by

smooth measures, Lecture Notes in Math. 1444, Springer, Berlin, 1990.

[5] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory,
Academic Press, New York, 1968.

[6] K.S. Chang, J. A. Lim, and K. S. Ryu, Stability theorem for the Feynman integral
via time continuation, Rocky Mountain J. Math. 29 (1999), 1209-1224.

[7] J. Diestel and J. J. Uhl, Vector measures, Mathematical surveys, No. 15, Amer-
ican Mathematical Society, Providence, R.I., 1997.

[8] R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev.
Modern Phys. 20 (1948), 367-387.

[9] M. Fukushima, Dirichlet forms and Markov processes, North Holland and Ko-
dansha, 1980.

[10] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math.
Soc. Colloq. Pub. 31, American Mathematical Society, Providence, R.I., 1957.

[11) G. W. Johnson, A bounded convergence theorem for the Feynman integral, J.
Math. Phys. 25 (1984), 1323-1326.

, Eristence theorems for the analytic operator-valued Feynman integral,
Sé minaire d’Analyse Moderne 20, Sherbrooke, QC, 1988.

[13) G. W. Johnson and J. G. Kim, A dominated-type convergence theorem for the
Feynman integral, J. of Math. Phys. 41 (2000), 3104-3112.

[14] G. W. Johnson and M. L. Lapidus, Generalized Dyson series, generalized Feym
man diagrams, the Feynman integral and Feynman’s operational calculus, Mem.
Amer. Math. Soc. 62 (1986), no. 351.

, The Feynman integral and Feynman’s operational calculus, Oxford
Mathematical Monographs, Oxford University Press, New York, 2000.

[16] T. Kato, Perturbation theory for linear operators, 2nd ed., Springer Verlag,
Berlin, 1976.

[17] R. A. Kunze and I. E. Segal, Integrals and operators, 2nd rev. and enl. ed.,
Springer, Berlin, 1978.

(12]

[15]




New results on stability properties 577

[18] M. L. Lapidus, Perturbation theory and a dominated convergence theorem for
Feynman integrals, Integral Equations Operator Theory 8 (1985), 36-62.

[19] J. A. Lim, Stability theorem for the Feynman integral via additive functionals,
Commun. Korean Math. Soc. 13 (1998), no. 3, 525-538.

[20] Z. M. Ma and M. Rockner, An introduction to the theory of (non-symmetric)
Dirichlet forms, Springer Verlag, Berlin, 1992.

[21] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. I, revised
and enlarged ed., Functional analysis, Academic Press, New York, 1975.

, Methods of modern mathematical physics, Vol. I1, Fourier analysis, Self-
adjointness, Academic Press, New York, 1975.

[23] B. Simon, A canonical decomposition for quadratic forms with applications to
monotone convergence theorems, J. Funct. Anal. 28 (1978), 377-385.

, Schrodinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.

[22]

[24]

Department of Mathematics and Statistics
University of Nebraska-Lincoln

Lincoln, NE 68588-0323, U.S.A.

E-mail: jlim@math.unl.edu



