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FIXED POINT THEORY FOR MULTIMAPS
IN EXTENSION TYPE SPACES

Ravi P. AGARWAL, DoNAL O’REGAN AND SEHIE PARK

ABSTRACT. New fixed point results for the 2AZ selfmaps are given.
The analysis relies on a factorization idea. The notion of an essential
map is also introduced for a wide class of maps. Finally, from a new
fixed point theorem of ours, we deduce some equilibrium theorems.

1. Introduction

This paper presents new fixed point results for multivalued selfmaps,
in particular the A$(X, X) maps. The most general result in the litera-
ture [12] assumes X is convex and admissible (in the sense of Klee), but
here we will show that it is enough to assume X is an extension space
(so it could be an absolute retract), or an approximate extension space,
or indeed a neighborhood extension space under some restrictions. In
Section 3 we present the notion of an essential map and discuss some of
its properties. Section 4 presents some quasi—equilibrium theorems.

For the remainder of this section we present some definitions and
known results which will be needed throughout this paper. We will
follow mainly [1, 2, 3, 12].

Let Y be a convex subset of a Hausdorff topological vector space
E. Recall a polytope P in Y is any convex hull of a nonempty finite
subset of Y. A nonempty subset X of E is said to be admissible
(in the sense of Klee) if for every compact subset K of X and every
neighborhood V of 0, there exists a continuous function h: K — X
such that z — h(z) € V for all x € K and h(K) is contained in a
finite dimensional subspace of E. For example, every convex subset of
a Hausdorff locally convex topological vector space is admissible. For
other examples, see [12]| and references therein.
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Of particular importance in this paper will be the class 25 due to
Park. Suppose X and Y are topological spaces. Given a class X
of maps, X(X,Y) denotes the set of maps F : X — 2Y (the set of
nonempty subsets of Y) belonging to X, and X, the set of finite com-
positions of maps in X. We let

FX)={X: FizF #0 forall FeX(X,X)},
where Fiz F' denotes the set of fixed points of F': X — 2%,

A class 2 of maps is defined by the following properties:

(i) A contains the class C of single-valued continuous functions;

(ii) each F € %A, is upper semicontinuous (u.s.c.) and compact-
valued; and

(ili) for any polytope P, F € 2.(P,P) has a fixed point, where the
intermediate spaces of compositions are suitably chosen for each
2.

An admissible class A5(X,Y) of maps F : X — 2Y is one such that,
for each F' and each nonempty compact subset K of X there exists a
map G € A.(X,Y) satisfying G(z) C F(z) for all z € K.

Examples of A7 are classes of continuous functions C, the Kakutani
maps K (u.s.c. with nonempty compact convex values and codomains
are convex spaces), the Aronszajn maps M (u.s.c. with Rs values), the
acyclic maps V (u.s.c. with compact acyclic values), the Powers maps
V. (finite compositions of acyclic maps), the O’Neill maps N (contin-
uous with values of one or m acyclic components, where m is fixed),
the approachable maps A (whose domains and codomains are uniform
spaces), admissible maps of Gérniewicz, o-selectional maps of Haddad
and Lasry, permissible maps of Dzedzej, the class KI of Lassonde, the
class VI of Park et al.,, and approximable maps of Ben-El-Mechaiekh
and Idzik, and others. For details on the admissible classes, see [12].

In [12] Park gave an elementary proof of the following result.

THEOREM 1.1. Let E be a Hausdorff topological vector space and
X an admissible, convex, compact subset of E. Then any map F €
A% (X, X) has a fixed point.

A class of maps R(X,Y) is said to be admissible (in the sense of
Ben-El-Mechaiekh and Deguire [3]) if

(i) R contains the class C; and

(ii) each F € R. is upper semicontinuous and closed-valued.
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The following result is given in [3, Proposition 2.2].

THEOREM 1.2. Let R be an admissible class of maps. Then the
Hilbert cube I (subset of I? consisting of points (x1,%2,...) with
lzi| < 1/i for all ¢ ) and the Tychonoff cube T (cartesian product of
copies of the unit interval imbedded in a normed space ) are in F(R.)
provided the closed unit ball B™ = {z € R" : ||z| < 1} isin F(R.)
for all n > 1.

From Theorem 1.1 or 1.2, we immediately have the following.
THEOREM 1.3. I® and T are in F(AF).

REMARK 1.1. It is worth remarking that we do not need to introduce
the class R (we did so to give credit to the authors in [1, 3]) since if
we assume B” € F(R.), then since B” is a homeomorphic image of a
polytope, we have for any polytope P, that F' € R.(P,P) has a fixed
point, where the intermediate spaces of compositions are suitably chosen
for each R. Thus Theorem 1.3 follows immediately from [3] and the fact
that B™ € F(AL).

REMARK 1.2. Since I*° and T are compact, Theorem 1.3 is actually
equivalent to

(1) I*°® and T are in F(2.).
However, considering a Browder type map F' (having nonempty convex
values and open fibers), we notice that £ ¢ 2, but F € 2A~.

For a subset K of a topological space X, we denote by Covx (K) the
directed set of all coverings of K by open sets in X (usually we write
Cov (K) = Covx (K)). Given amap F : X — 2X and a € Cov (X),
a point £ € X is said to be an o—fized point of F if there exists a
member U € a such that z € U and F(z)NU # 0.

Given two maps F, G : X — 2Y and a € Cov(Y), F and G are
said to be a—close, if for any = € X there exist U, € a, y € F(z)NU,,
and w € G(z) NU,.

2. Extension type spaces and fixed points

In this section, we show that various extension type spaces have the
fixed point property with respect to the 2% selfmaps. For details and
examples of such extension type spaces, see [1, 3| and references therein.

In the definitions in this section by a space we mean a Hausdorff
topological space.
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Let @ be a class of topological spaces. A space Y is an extension
space for @ (written Y € ES(Q)) if for any pair (X,K) in @ with
K C X closed, any continuous function fp : K — Y extends to a
continuous function f: X — Y.

We now present a new fixed point result for the 2§ maps.

THEOREM 2.1. Let X € ES(compact) and F € A5(X,X) a com-
pact map. Then F has a fixed point.

Proof. 1t is known [8] that every compact space is homeomorphic
to a closed subset of the Tychonoff cube T, so as a result K = F(X)
can be embedded as a closed subset K* of T; let s: K — K* be a
homeomorphism. Alsolet 7: K — X and j: K* — T be inclusions.
Now since X € ES(compact) and is~!: K* — X, then is~1 extends
to a continuous function h : T — X. Let G = jsF h and notice
G € U5(T,T). Hence, Theorem 1.3 guarantees that there exists € T
with z € G(x). Let y = h(z), so

y€hjsF(y) ie. y=hjs(q) for some g€ F(y).

Since hj(z) = is71(2) for z € K*, we have hjs(q) = (hj)s(q) =
i1(q) = q, and so y € F(y). O

REMARK 2.1. If X € AR (an absolute retract as defined in [5]) then
of course X € ES(compact) [We know from the Arens—Eells theorem
that X is r—dominated by a normed space E so there exist maps
r:E— X and s: X — E with rs = 1. Now since any normed space
is ES(compact), it follows immediately that X € ES(compact)]. So a
special case of Theorem 2.1 occurs if X € AR.

A space Y is an approzimate extension space for @ (written Y €
AES(Q)) if for any a € Cov(Y) and any pair (X,K) in @ with
K C X closed, and any continuous function fo: K — Y, there exists a
continuous function f:X — Y such that f|x is a—close to fo.

We now extend Theorem 2.1 to approximate extension spaces. To
prove this we need the following elementary result for a-fixed points
(see [1, Lemma 1.2]).

LEMMA 2.2. Let X be a regular topological space and F : X — 2%
an upper semicontinuous map with closed values. Suppose there exists
a cofinal family of coverings 8 C Couv(X) such that F' has an a—fixed
point for every o € . Then F has a fixed point.

THEOREM 2.3. Let X € AES(compact) and F € Af(X,X) a
compact map. Then F has a fixed point.
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Proof. Let K, K*, s, i and j be as in the proof of Theorem 2.1. Let
a € Cov(X) andlet h:T — X besuch that h and is~! are a—close
on K* (guaranteed since X € AES(compact)). Let G = jsF h and
notice G € AL(T,T). Now Theorem 1.3 guarantees that there exists
z €T with z € G(z). Let y = h(z), so

yehjsF(y) ie. y=hjs(q) for some g€ F(y).

Since i s~! and h are a—close on K* there exists U € o withis71(s(q)) €
Uand hj(s(q)) €U ie. ¢qeU and y € U. Thus

yeU and F(y)NU # 0 since q € F(y).

As a result F' has an a-fixed point. Since « is arbitrary, Lemma 2.2
guarantees that F' has a fixed point. O

DEFINITION 2.1. Let V' be a subset of a Hausdorff topological vector
space E. Then we say V is Schauder admissible if for every compact
subset K of V and every covering o € Covy(K), there exists a con-
tinuous function (called the Schauder projection) 7, : K — V such
that

(i) mo and 7: K — V are a-close;

(i) 7o (K) is contained in a subset C C V with C € AES(compact).

If V € AES(compact) then V is trivially Schauder admissible. If
V' is an open convex subset of a Hausdorff locally convex topological
vector space E, then it is well known [1, Lemma 4.8] that V' is Schauder
admissible.

We next present a result of Himmelberg type [9].

THEOREM 2.4. Let V be a Schauder admissible subset of a Hausdorff
topological vector space E and F &€ A5(V,V) a compact map. Then
F has a fixed point.

Proof. Since F(V) C K, K compact, for each a € Covy (K) there
exist my : K — V (as described in Definition 2.1) and a subset C C V
with C € AES(compact) such that, by putting F, = n,F,

Fo(V)=mF(V)CC.

Notice F, € A%(C,C) so Theorem 2.3 guarantees that there exists
z € C with z € o F (z) i.e. © = mq(q) for some ¢ € F(z). Now
Definition 2.1 (i) guarantees that there exists U € a with 7, (¢) € U
and i(q) €U i.e. z€ U and ¢ U. Thus

z€U and F(z)NU #0 since ¢ € F ().
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As a result F has an a-fixed point. Since « is arbitrary, Lemma 2.2
guarantees that F' has a fixed point. O

A space Y is a neighborhood extension space for @ (written Y €
NES(Q)) if for any pair (X,K) in Q with K C X closed and any
continuous function fy : K — Y there is a continuous extension f :
U—-Y of fy over a neighborhood U of K in X.

We would like to extend Theorem 2.3 to neighborhood extension
spaces. However even in the case when F' is admissible in the sense
of Gérniewicz [6] extra conditions need to be added (recall that maps
admissible in the sense of Gdrniewicz are in the class 2¥).

Recall the following well known result [1, Lemma 4.7].

LEMMA 2.5. Let T be a Tychonoff cube contained in a Hausdorff
topological vector space. Then T is a retract of span (T).

Let X € NES(compact) and F € A%(X, X) a compact map.

Let K, K*, s and 1 be as in the proof of Theorem 2.1. Let U be an
open neighborhood of K* in T and h:U — X be a continuous exten-
sion of is7!: K* - X on U (guaranteed since X € NES(compact)).
Let j : K* < U be the natural embedding so hj = is~!. Now con-
sider span (T) in a Hausdorff locally convex topological vector space
containing 7. Now Lemma 2.5 guarantees that there exists a retraction
r: span(T) — T. Let i* : U — r~1(U) be an inclusion and consider
G =i*js Fhr. Notice G € A5(r~1(U),r~}(U)). Assume

(2.1) G e A (r~Y(U),r Y (U)) has a fixed point.

If (2.1) is true then there exists z € r~}(U) with z € Gz. Let y =
hr(z), so

yeEhri*jsF(y) ie. y=hri*js(q) for some q € F (y).

Since h(z) = is71(z) for z € K*, wehave hri*js(q) = (hri*j)s(q) =
i(q), and so y € F(y).

Thus existence of a fixed point of F' is guaranteed if (2.1) is satisfied;
recall G = *jsFhr and 7~ 1(U) is an open subset of a Hausdorff
locally convex topological vector space.

For specific classes of maps (2.1) is known to be true. For example,
if F is admissible in the sense of Gérniewicz (6] and the Lefschetz set
A(F) # {0} then we know [6] that (2.1) holds. More generally, if F
is permissible in the sense of Dzedzej [7] and A (F) # {0} then (2.1)
holds. It would be of interest to know other examples.
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3. Essential maps

Throughout this section Y will be a completely regular topological
space with Y € AES(compact), so in particular the results in this
section will hold if Y € ES(compact) or Y € AR. [Of course Y €
AES(compact) could be replaced by Y Schauder admissible in this
section|. Also U will be an open subset of Y. In this section we consider
a subclass A of A¥. The subclass must have the following property:
for subsets X3, X3 and X3 of Hausdorfl topological vector spaces

if FeA(XyX3) and f € C(Xy,Xa), then Ffe A(X1,Xs).

The theory in this section will work for any class of maps A which
satisfy a normalization property. In particular one can view the class
A as any class where we can get a Leray-Schauder type result. For
example we could take A to be V since clearly (3.3) (and (3.4), (3.5))
hold.

DEFINITION 3.1. F € Agy(U,Y) if F € A(U,Y) with F compact
and z ¢ F(z) for z € OU.

DEFINITION 3.2. A map F € Asu(U,Y) is essential if for every
G € Ay (U,Y) with Glgy = Flou there exists z € U with z € G(z).

THEOREM 3.1. (_Homotopy Invariance) Let Y and U be as above.
Suppose F € Agy(U,Y) is an essential map and H € A(U x [0,1],Y)
is a compact map. Also assume the following two properties hold:

(3.1) H(z,0) = F(z) for z€U
and

(3.2)
xz ¢ Hy(x) forany x € OU and t € (0,1] (here Hi(z) = H(z,t)).

Then H, has a fixed point in U.
Proof. Let -
B={z€U: z € Hyz) for some te[0,1]}.

When t =0, H; = F and since F' € Asy(U,Y) is essential there exists
an ¢ € U with z € F(z). Thus B # 0. Since H is upper semicon-
tinuous and compact, it is immediate that B is closed and compact.
In addition (3.2) (together with F € Asy(U,Y)) implies B N oU = 0.
Thus (since Y is completely regular) there exists a continuous func-
tion p: U — [0,1] with u(0U) =0 and u(B) = 1. Define a map R
by R(z) = H(z,u(z)) for z € U. Let j: U — U x [0,1] be given
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by j(z) = (z,u(z)). Note j is continuous so R = Hj € A(U,Y).
In addition, R is compact since H is. Also notice for x € OU that
R(z) = Hy(z) = F(z), and so R € Agu(U,Y). Now R|suv = Flov
and F € Asy(U,Y) essential implies that there exists € U with
r € R(z) (ie. T € Hyg(z)). Thus z € B and so u(z) = 1. Conse-
quently z € Hi(z). O

Next we give an example of an essential map.

THEOREM 3.2. (Normalization) Let Y and U be as above with
0 € U. Suppose the following condition is satisfied:

for any map 0 € Apy(U,Y) with 0|ay = {0},
the map J isin 2AX(Y,Y); here

_ [ 0(z), zeU
e) = { {0}, ze Y \T.

Then the zero map is essential in Agy(U,Y).

Proof. Let 0 € Asy(U,Y) with sy = {0}. We must show that
there exists z € U with z € §(z). Define a map J by

[ 8(x), z€U
J(x)—{ (0}, zeV\T.

From (3.3) we know J € 2A5(Y,Y). Clearly J is compact since 8 is.
Hence, Theorem 2.3 implies that there exists z € Y with =z € J(z).
Now if x ¢ U we have € J(z) = {0}, which is a contradiction since
0€U. Thus z €U so z € J(z) = 6(z). O

Next we present another version of the normalization property when
we are in the topological vector space setting. Let Y € AES(compact)
be a convex subset of a topological vector space E and let U be an open
subset of Y with 0 € U. In addition assume there exists a continuous
retraction r:Y — U.

(3.3)

THEOREM 3.3. (Normalization) Let E, Y, U and r be as above
and suppose the following condition is satisfied:

(3-4) any map G € A(Y,Y) we have uG € 2A5(Y,Y).

{ for any continuous function p:Y — [0,1] and
Then the zero map is essential in Asy(U,Y).
Proof. Let 8 € Agy(U,Y) with sy = {0}. Let

A={zx€U: z € \(z) for some A€ [0,1]}.
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Now A # 0 is compact and A C U (this is clear since 0 € U and
Bloy = {0} ). Thus there exists a continuous function u : Y — [0,1]
with p(A) =1 and p(Y'\U) = 0. Define a map Jy by

Jo(z) = p(z) 6(r(z)) for z €Y.

Note 0r € A(Y,Y) so Jy € AL(Y,Y) from (3.4). Theorem 2.3 implies
that there exists z € Y with z € u(z)0(r(z)). If x € Y\U then u(z) =
0, a contradiction since 0 € U. Thus € U and so z € u(x)8(x). As
aresult x € A, so u(x) = 1. Consequently z € 8(z). d

Of course we can obtain a nonlinear alternative of Leray—Schauder
type by combining Theorems 3.1 and 3.3. In fact, we can obtain a more
general result.

THEOREM 3.4. Let E, Y, U and r be as above. Suppose F €
A(U,Y) satisfies (3.4) and assume the following conditions hold:

(3.5) for any continuous function u:U — [0,1] and
’ any map G € A(U,Y) we have uG € A(U,Y)

and

(3.6) z & AF(z) forevery x € OU and X € (0,1].

Then F is essential in Aay(U,Y).

. Proof. Let ® € Asy(U,Y) with @5y = Flsy. We must show &
has a fixed point in U. Let

D={zeU: ze\®(z) for some X€ [0,1]}.

Now D # () is compact and DNAU = § (note (3.6) with ®|sy = Flay
and that 0 € U). Thus there exists a continuous function p: U — [0, 1]
with 4(0U) =0 and p(D) = 1. Define amap R by R(z) = p(z) &(z).
Now (3.5) guarantees that R € A(U,Y). Also R is compact with
Rloy = {0}. Now since R € Agy(U,Y) and since the zero map is
essential in Asy(U,Y) (Theorem 3.3) there exists z € U with z €
R(z). Thus z € D and so p(z) =1, ie., z € &(z). O

4. Quasi—equilibrium theorem

We begin this section by expressing Theorem 2.4 as an equilibrium
theorem. Then a general result will be deduced from our main theorem.

THEOREM 4.1. Let E and Y be Hausdorff topological vector spaces,
Q asubset of E, G : Q — k(Q) (nonempty compact subsets of ()) and
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T :Q — 2¢ where C is a subset of Y. In addition assume the following
conditions hold:

(4.1) f:QxC xQ— R is a upper semicontinuous function,
(4.2) G and T are compact maps,

(4.3) Q x C is an Schauder admissible subset of E x Y,

and

(4.4) FedZ(Q xC,Q xC);

here F(z,y) = ®(z,y) x T(z) for (z,y) € Q x C with
B(z,y) = {w € G(&) : F(z,y,w) = M(z,1)}

and M(z,y) = max,eq() f(z,y,w). Then there exist (xp,y0) € QxC,
zo € G(zp), and yo € T(x¢) with

f(zo,v0,2) < f(xo,y0,20) for all z € G(xo).
If in addition
(4.5) flz,y,2) <0 forall (z,y) €@ xC,

then there exists (xo,y0) € Q x C such that z¢ € G(zo), yo € T(zo),
and
f(zo,y0,2) <0 for all z € G(zg).

Proof. Notice ®(x,y) is nonempty (and compact) for each (z,y) €
QxC. Asaresult F:Q x C — 29%C and also F is compact since
F(QxC) C G(Q)xT(Q). Now Theorem 2.4 guarantees that there exists
(0,y0) € Q X C with (x0,y0) € ®(z0,yo) X T(z0). That is, there exists
(Zo,90) € @ x C with zp € G(z0), yo € T(wo) and f(zo,v0,%0) =
M(zo,v0) (i-e., f(zo,%0,2) < f(zo,y0,z0) for all z € G(xg)), so we are
finished the first part. For the second part assume (4.5) holds, and so
the result is immediate from the first part. U

Next we consider a subclass D of Af. If X and Y are subsets of
Hausdorff topological vector spaces then we say F' € D(X,Y) if F €
2%(X,Y) and is upper semicontinuous with nonempty compact values
and satisfies Property (C) (to be specified in the examples considered).
Also we assume for subsets X; and X, of Hausdorff topological vector
spaces

(4 6) { if Fye D(X]_ X Xg,Xl) and F» € D(Xl,Xz)

then F3 € A¥(X; x X2, X; X X3);
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here F3(z,y) = Fi(z,y) x Fy(z). A typical example of a class D is the
acyclic maps V (i.e., Property (C) means the map is acyclic valued).

THEOREM 4.2. Let E and Y be Hausdorff topological vector spaces,
Q asubsetof E, G:Q — k(Q) and T : Q — k(C) where C is a subset
of Y. Suppose (4.1), (4.2), (4.3), (4.6) hold and in addition assume the
following conditions are satisfied:

(4.7) G:Q — 29 is upper semicontinuous
(4.8) { M :Q x C — Q is lower semicontinuous
) ( here M(:B,y) = MaX,eG(x) f(l':y,w) )
(4.9)
T € A7(Q,C) is upper semicontinuous and satisfies Property (C)
and
(4.10) ® c AT (Q x C,Q) and satisfies Property (C);
here

(D(l‘,y) = {w € G(:II) : f(xayaw) = M(m,y)}.
Then there exists (xo,yo0) € Q x C, xg € G(xo) and yo € T(zo) with

f(zo,90,2) < f(zo,y0,20) for all z € G(xp).

If in addition (4.5) holds, then there exists (zq,yo) € @*xC, xo € G(z0)
and yo € T(xzo) with f(zo,y0,2) <0 for all z € G(zp).

Proof. The result follows from Theorem 4.1 once we show (4.4) holds.
First we show @ is upper semicontinuous. To show this it suffices (note
® is compact) to show @ is closed. Let {(zq, Yo, wa)} be a net in
graph (®) with (zq4, Yo, Wa) — (z,y,w). From (4.8) it follows that

f(:r,y,’w) Z hmsul)f(xmya,’wa) 2 hmlnfM(xa,ya) 2 M(w?y)

Also wo, € G(zo) together with z, — z, w, — w and G upper
semicontinuous (so G is closed) implies w € G(z) and f(z,y,w) >
M(z,y). Consequently f(z,y,w)= M(z,y), so (z,y,w) € graph (®).
Thus & is upper semicontinuous with nonempty, compact values, so
this together with (4.10) implies ® € D(Q x C, Q). Also (4.2) and (4.9)
guarantees that T' € D(Q,C). As aresult F € A¥(Q x C,Q x C) from
(4.6); here F(z,y) = ®(z,y) x T(z). Thus (4.4) holds. O

For the motivation and some related results in this section, the reader
can refer to [4, 10, 11, 13, 14, 16].
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