STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES

SH. PAYROVI

ABSTRACT. The aim of the paper is to obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of A is of the form $\prod_{p\in \operatorname{Att}_R(A)}T_p$, where T_p is the completion of a free R_p -module. Also, we construct a minimal flat resolution for R/xR-module $0:_Ax$ from a given minimal flat resolution of A, when x is a non-unit and non-zero divisor of R such that A=xA. This result leads to a description of the structure of a minimal flat resolution for $\operatorname{H}^n_m(R)$, nth local cohomology module of R with respect to the ideal m, over a local Cohen-Macaulay ring (R,m) of dimension n.

1. Preliminaries

Throughout this paper, R denotes a commutative ring with non-zero identity and M an R-module.

Let us recall briefly some notions defined in [3, 4, 11]. By terminology of Enochs in [3], a linear map $\phi: F \longrightarrow M$ with F flat is called a flat precover of M if $\operatorname{Hom}_R(G, F) \longrightarrow \operatorname{Hom}_R(G, M) \longrightarrow 0$ is exact for all flat modules G. If furthermore any linear map $f: F \longrightarrow F$ such that $\phi f = \phi$ is an automorphism of F, then $\phi: F \longrightarrow M$ is called a flat cover of M. It was proved that the flat cover of M exists and is unique up to isomorphism (see [1, 3]). Also, if M has a flat precover F, then M has a flat cover which is a direct summand of F.

DEFINITION 1.1. A minimal flat resolution of M is an exact sequence

$$(1) \qquad \cdots \longrightarrow F_i \xrightarrow{d_i} F_{i-1} \longrightarrow \cdots \longrightarrow F_0 \xrightarrow{d_0} M \longrightarrow 0$$

such that for each i, F_i is a flat cover of $Im(d_i)$.

Received October 15, 2001.

2000 Mathematics Subject Classification: 13C11, 13E10.

Key words and phrases: Artinian module, flat cover, minimal flat resolution.

An R-module C is called cotorsion if $\operatorname{Ext}^1_R(F,M)=0$ for all flat modules F.

For the remaining part of this paper, we shall assume that R is Noetherian.

Note that for any injective R-module E, by Matlis' theorem [9], E is a direct sum of indecomposable injective modules such that each of them is in the form E(R/p) for some prime ideal p. In general we do not have a similar result for any flat R-module. But if F is flat and cotorsion R-module, then it was proved in [4] that F is uniquely a product $F = \prod T_p$. Here T_p is the completion of a free R_p -module with respect to the pR_p -adic topology. Also note that a flat cover of a cotorsion module is flat and cotorsion, and the kernel of a flat cover $F \longrightarrow M$ is cotorsion (see [4]). Therefore, in (1.1), for all $i \ge 1$, F_i is flat and cotorsion, and then it is a product of such T_p . For i = 0, F_0 is not cotorsion in general. But we take its cotorsion envelope (or equivalently pure injective envelope). The pure injective envelope $PE(F_0)$ of F_0 is flat and cotorsion [5, p. 352]. Hence, $PE(F_0)$ is a product of T_p .

DEFINITION 1.2. Assume M has a minimal flat resolution as (1). For $i \geq 1$ and prime ideal p of R, $\pi_i(p, M)$ is defined to be the cardinality of the base of a free R_p -module whose completion is T_p in the product $F_i = \prod T_q$. For i = 0, $\pi_0(p, M)$ is defined similarly by using the pure injective envelope $\text{PE}(F_0)$ instead of F_0 itself.

We note that the $\pi_i(p, M)$ are homologically independent and well-defined. We call the $\pi_i(p, M)$ the dual Bass numbers.

2. The main results

Let us recall basic facts concerning a secondary module respectively secondary representation of a module, for the details see [8]. An R-module $S \neq 0$ is called secondary if for each $a \in R$ multiplication by a on S is surjective or nilpotent. When this is the case, $r(\operatorname{Ann}_R(S)) = p$ is a prime ideal of R, in these circumstances, we say that S is a p-secondary R-module. Let X be an R-module. A secondary representation of X is an expression for X as a sum of finitely many secondary submodules of X. Such a secondary representation $X = S_1 + \cdots + S_n$ with S_i , p_i -secondary and $1 \leq i \leq n$ of X is said to be minimal precisely when p_1, \dots, p_n are n different prime ideals of R and for all $j = 1, \dots, n$ we

have $S_j \not\subseteq \sum_{i=1, i\neq j}^n S_i$. We say that X is a representable R-module when it has a secondary representation. The set $\{p_1, \cdots, p_n\}$ depends only on X and called the set of attached prime ideals $\mathrm{Att}_R(X)$.

The following result is essential in the proof of (2.2) and we quote it for the convenience of the reader.

LEMMA 2.1. [8, 2.8] Let A be a representable R-module and let \underline{a} be an ideal of R. Then $A = \underline{a}A$ if and only if there exists $x \in \underline{a}$ such that A = xA.

Proof. The 'if' part is obvious. Hence we shall prove the 'only if' half. If $A \neq xA$ for any $x \in \underline{a}$ then by using [8, 2.6], $\underline{a} \subseteq \cup_{p \in \operatorname{Att}_R(A)} p$. Since $\operatorname{Att}_R(A)$ is a finite set, there exists p such that $\underline{a} \subseteq p$, $p \in \operatorname{Att}_R(A)$. Now, in view of [8, 2.5], there is a proper submodule B of A such that $p = \operatorname{Ann}_R(A/B)$. Hence $\underline{a}A \subseteq pA \subseteq B \subsetneq A$ contrary to the assumption. \square

THEOREM 2.2. Let A be an Artinian R-module and let $F = \prod T_q$ be the flat cover of A. Then T_p appears in the product of F if and only if $p \in \text{Att}_R(A)$.

Proof. By using [12, p. 63] A is cotorsion. Hence, as mentioned before, F is flat and cotorsion. Thus, in view of [4, p. 183], $F = \prod T_q$, where T_q is the completion of a free R_q -module with respect to the qR_q -adic topology. Assume that T_p appears in the product of F. It follows from [7, Theorem 2.2] that $k(p) \otimes_{R_p} \operatorname{Hom}_R(R_p, A) \neq 0$, where k(p) denotes the residue field of R_p . So that $pR_p\operatorname{Hom}_R(R_p, A) \neq \operatorname{Hom}_R(R_p, A)$. On the other hand, by using [10, Theorem 3.2], we have that $\operatorname{Hom}_R(R_p, A)$ is a representable R_p -module and

$$\operatorname{Att}_{R_p}(\operatorname{Hom}_R(R_p, A)) = \{qR_p : q \subseteq p, q \in \operatorname{Att}_R(A)\}.$$

Now (2.1) shows that there is not any element $x \in pR_p$ such that $x \operatorname{Hom}_R(R_p, A) = \operatorname{Hom}_R(R_p, A)$. Hence $pR_p \subseteq \bigcup_{Q \in \operatorname{Att}_{R_p}(\operatorname{Hom}_R(R_p, A))}Q$. Thus $pR_p \in \operatorname{Att}_{R_p}(\operatorname{Hom}_R(R_p, A))$; since pR_p is a maximal ideal of R_p . Therefore, $p \in \operatorname{Att}_R(A)$. Conversely, if $p \in \operatorname{Att}_R(A)$ then $pR_p \in \operatorname{Att}_{R_p}(\operatorname{Hom}_R(R_p, A))$. Hence $k(p) \otimes_{R_p} \operatorname{Hom}_R(R_p, A) \neq 0$. Thus $\pi_0(p, A) \neq 0$. So that T_p is a direct summand of F. The result follows. \square

Let (R, \underline{m}) be a local ring, let $E(R/\underline{m})$ be the injective envelope of R/\underline{m} , and let $F = \prod T_q$ be the flat cover of $E(R/\underline{m})$. In [12, Remark 4.4.9], Xu has proved that, if p is a minimal prime ideal of R then T_p

appears in the product of F. Also, at that time, this problem "for a prime ideal p, when T_p appears in the product of F" was a question for him. The following corollary give an answer to the above question.

COROLLARY 2.3. Let (R, \underline{m}) be a local ring and let $F = \prod T_q$ be a flat cover of $E(R/\underline{m})$. Then T_p appears in the product of F if and only if $p \in \mathrm{Ass}_R(R)$.

Proof. We know that $E(R/\underline{m})$ is an Artinian R-module with $\operatorname{Att}_R(E(R/\underline{m})) = \operatorname{Ass}_R(R)$. Thus by using (2.2) the result follows. \square

In the remaining part of this section, we are primarily concerned with minimal flat resolutions of Artinian *R*-modules.

THEOREM 2.4. Let A be an Artinian R-module and let x be a nonunit and non-zero divisor of R such that A = xA. If p is a prime ideal of R and $x \in p$ then for all $i \ge 0$,

$$\operatorname{Tor}_{i}^{\overline{R}_{\overline{p}}}(k(\overline{p}), \operatorname{Hom}_{\overline{R}}(\overline{R}_{\overline{p}}, 0:_{A} x)) \cong \operatorname{Tor}_{i+1}^{R_{p}}(k(p), \operatorname{Hom}_{R}(R_{p}, A))$$

where $\overline{R} = R/xR$, $\overline{p} = p/(x)$ and $k(\overline{p})$ denotes the residue field of $\overline{R}_{\overline{p}}$.

Proof. Let

$$F^{\bullet} \longrightarrow F_i \xrightarrow{d_i} F_{i-1} \longrightarrow \cdots \longrightarrow F_0 \xrightarrow{d_0} A \longrightarrow 0$$

be a minimal flat resolution for A. In [7, Theorem 2.7] it was proved that

$$\cdots \longrightarrow \operatorname{Hom}_R(R_p, F_i) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_R(R_p, F_0) \xrightarrow{\overline{d}_0} \operatorname{Hom}_R(R_p, A) \longrightarrow 0$$

is a minimal flat resolution of $\operatorname{Hom}_R(R_p, A)$ as an R_p -module. Suppose that $K=\ker \overline{d}_0$. The commutative diagram

in which the rows are exact, induces an exact sequence

$$0:_{\operatorname{Hom}_{R}(R_{p},F_{0})} \frac{x}{1} \longrightarrow 0:_{\operatorname{Hom}_{R}(R_{p},A)} \frac{x}{1} \longrightarrow K/\frac{x}{1}K$$

$$\longrightarrow \operatorname{Hom}_{R}(R_{p},F_{0})/\frac{x}{1}\operatorname{Hom}_{R}(R_{p},F_{0}).$$

But $0:_{\operatorname{Hom}_R(R_p,F_0)} \frac{x}{1}=0$; since $\operatorname{Hom}_R(R_p,F_0)$ is a flat R_p -module and x/1 is a non-zero divisor of R_p . We show that $\operatorname{Hom}_R(R_p,F_0)$ $/\frac{x}{1}$

 $\operatorname{Hom}_R(R_p,F_0)=0$ (or equivalently $\overline{R}_{\overline{p}}\otimes_{R_p}\operatorname{Hom}_R(R_p,F_0)=0$). By using (2.2) we have $F_0=\prod_{q\in\operatorname{Att}_R(A)}T_q$, so that

$$\overline{R}_{\overline{p}} \otimes_{R_p} \operatorname{Hom}_R(R_p, F_0) \cong R_p / x R_p \otimes_{R_p} \operatorname{Hom}_R(R_p, \prod_{q \in \operatorname{Att}_R(A)} T_q)$$

$$\cong \prod_{q \in \operatorname{Att}_R(A)} (R_p / x R_p \otimes_{R_p} \operatorname{Hom}_R(R_p, T_q))$$

$$\cong \prod_{q \in \operatorname{Att}_R(A)} \operatorname{Hom}_R(R_p, T_q) / x \operatorname{Hom}_R(R_p, T_q) = 0$$

Hence, $0:_{\operatorname{Hom}_R(R_p,A)} \frac{x}{1} \cong K/\frac{x}{1}K$ as R_p - and $\overline{R}_{\overline{p}}$ -modules. Now it is easy to see that

$$(2) \quad \cdots \longrightarrow \overline{R}_{\overline{p}} \otimes_{R_p} \operatorname{Hom}_R(R_p, F_2) \longrightarrow \overline{R}_{\overline{p}} \otimes_{R_p} \operatorname{Hom}_R(R_p, F_1) \longrightarrow 0$$

is a flat resolution for $0:_{\operatorname{Hom}_R(R_p,A)} \frac{x}{1}$ as an $\overline{R}_{\overline{p}}$ -module. On the other hand, we have

$$0:_{\operatorname{Hom}_{R}(R_{p},A)}\frac{x}{1}\cong \operatorname{Hom}_{R_{p}}(\overline{R}_{\overline{p}},\operatorname{Hom}_{R}(R_{p},A))$$

$$\cong \operatorname{Hom}_{R_{p}}(\overline{R}\otimes_{R}R_{p},\operatorname{Hom}_{R}(R_{p},A))$$

$$\cong \operatorname{Hom}_{R}(\overline{R},\operatorname{Hom}_{R}(R_{p},A))$$

$$\cong \operatorname{Hom}_{R}(R_{p},0:_{A}x)\cong \operatorname{Hom}_{R}(R_{p},\operatorname{Hom}_{\overline{R}}(\overline{R},0:_{A}x))$$

$$\cong \operatorname{Hom}_{\overline{p}}(\overline{R}_{\overline{p}},0:_{A}x).$$

So that (2) is a flat resolution of $\operatorname{Hom}_{\overline{R}}(\overline{R}_{\overline{p}}, 0 :_A x)$ as an $\overline{R}_{\overline{p}}$ -module. If $\operatorname{H}_i(G^{\bullet})$ shows the *i*th homology module of an arbitrary complex G^{\bullet} then

$$\operatorname{Tor}_{i}^{\overline{R}_{\overline{p}}}(k(\overline{p}),\operatorname{Hom}_{\overline{R}}(\overline{R}_{\overline{p}},0:_{A}x)) \cong \operatorname{H}_{i}(k(\overline{p}) \otimes_{\overline{R}_{\overline{p}}} (\overline{R}_{\overline{p}} \otimes_{R_{p}} \operatorname{Hom}_{R}(R_{p},F^{\bullet})))$$

$$\cong \operatorname{H}_{i}((k(\overline{p}) \otimes_{\overline{R}_{\overline{p}}} \overline{R}_{\overline{p}}) \otimes_{R_{p}} \operatorname{Hom}_{R}(R_{p},F^{\bullet}))$$

$$\cong \operatorname{H}_{i+1}(k(p) \otimes_{R_{p}} \operatorname{Hom}_{R}(R_{p},F^{\bullet}))$$

$$\cong \operatorname{Tor}_{i+1}^{R_{p}}(k(p),\operatorname{Hom}_{R}(R_{p},A)).$$

The result follows.

COROLLARY 2.5. Let A be an Artinian R-module and let x be a non-unit and non-zero divisor of R such that A = xA. If p is a prime ideal of R and $x \in p$ then for all $i \ge 0$,

$$\pi_i(p/(x), 0:_A x) = \pi_{i+1}(p, A).$$

Proof. Assume p is a prime ideal of R such that $x \in p$. In view of [7, Theorem 2.2] and (2.4) the result follows, that is

$$\pi_{i}(p/(x), 0:_{A} x) = \dim_{k(\overline{p})} \operatorname{Tor}_{i}^{\overline{R}_{\overline{p}}}(k(\overline{p}), \operatorname{Hom}_{\overline{R}}(\overline{R}_{\overline{p}}, 0:_{A} x))$$

$$= \dim_{k(p)} \operatorname{Tor}_{i+1}^{R_{p}}(k(p), \operatorname{Hom}_{R}(R_{p}, A))$$

$$= \pi_{i+1}(p, A).$$

In the following we obtain a minimal flat resolution for $0:_A x$ as an R/xR-module by using a minimal flat resolution of A, where x and A is as in (2.5).

THEOREM 2.6. Let A be an Artinian R-module and let x be a non-unit and non-zero divisor of R such that A = xA. Let

$$\cdots \longrightarrow F_i \xrightarrow{d_i} F_{i-1} \longrightarrow \cdots \longrightarrow F_0 \xrightarrow{d_0} A \longrightarrow 0$$

be a minimal flat resolution for A. Let $K = \ker d_0$. Then $R/xR \otimes_R K \cong 0$: A x as R-and R/xR-modules, also the induced complex of R/xR-modules and R/xR-homomorphisms

(3)
$$\cdots \to F_i \otimes_R R/xR \to \cdots \to F_1 \otimes_R R/xR \to K \otimes_R R/xR \to 0$$

is a flat resolution for R/xR-module $K \otimes_R R/xR$. Furthermore, if

$$\cdots \longrightarrow G_i \xrightarrow{g_i} G_{i-1} \longrightarrow \cdots \longrightarrow G_0 \xrightarrow{g_0} 0 :_A x \longrightarrow 0$$

is a minimal flat resolution of $0:_A x$ as an R/xR-module then $G_i \cong F_{i+1} \otimes_R R/xR$, for all $i \geq 0$.

Proof. The commutative diagram

in which the rows are exact, induces an exact sequence

$$0:_K x \longrightarrow 0:_{F_0} x \longrightarrow 0:_A x \longrightarrow K/xK \longrightarrow F_0/xF_0 \longrightarrow A/xA.$$

Note that x is a non-zero divisor of R and F_0 is a flat module hence $0:_{F_0}x=0$. As mentioned in (2.2), $F_0=\prod T_p$ with $p\in \operatorname{Att}_R(A)$. Then

we have

$$F_0 \otimes_R R/xR = (\prod_{p \in \text{Att}_R(A)} T_p) \otimes_R R/xR$$

$$\cong \prod_{p \in \text{Att}_R(A)} (T_p \otimes_R R/xR)$$

$$\cong \prod_{x \notin p} T_p/xT_p = 0.$$

Thus $F_0/xF_0=0$, so that $0:_Ax\cong K/xK$ as R- and R/xR- modules. The exact sequence $F_2\longrightarrow F_1\longrightarrow K\longrightarrow 0$ shows that (3) is exact at $K\otimes_RR/xR$ and $F_1\otimes_RR/xR$. If n>1, the homology module of the complex

$$F_{i+1} \otimes_R R/xR \longrightarrow F_i \otimes_R R/xR \longrightarrow F_{i-1} \otimes_R R/xR$$

is isomorphic to $\operatorname{Tor}_i^R(A,R/xR)$, which is zero since the R-module R/xR has projective dimension ≤ 1 . Thus (3) is exact. Also, $F_i \otimes_R R/xR$ is a flat R/xR-module for all $i \geq 1$. Hence, (3) is a flat resolution for $K \otimes_R R/xR$. Let

$$\cdots \longrightarrow G_i \xrightarrow{g_i} G_{i-1} \longrightarrow \cdots \longrightarrow G_0 \xrightarrow{g_0} 0 :_A x \longrightarrow 0$$

be a minimal flat resolution of $0:_A x$ as an R/xR-module. So that $G_i = \prod U_{p/(x)}$, where $U_{p/(x)}$ is the completion of a free $(R/xR)_{p/(x)}$ -module with respect to the $p/(x)(R/xR)_{p/(x)}$ -adic topology, since $0:_A x$ is an Artinian R/xR-module. On the other hand, for all $i \geq 0$

$$F_{i+1} \otimes_R R/xR = (\prod T_p) \otimes_R R/xR = \prod T_p/xT_p = \prod T_{p/(x)}.$$

Now (2.5) shows that G_i and $F_{i+1} \otimes_R R/xR$ have the same factors when they are written as products as above. More precisely, if $T_p \otimes_R R/xR \subset F_{i+1} \otimes_R R/xR$ then $T_p \subset F_{i+1}$. Hence, in view of (2.5), G_i has a direct summand as $U_{p/(x)}$, where $U_{p/(x)}$ is the completion of a free $(R/xR)_{p/(x)}$ -module with a base having the same cardinality as that of the base of the free R_p -module whose completion is T_p . Thus $U_{p/(x)} \cong T_p \otimes_R R/xR$. A same argument shows that if $U_{q/(x)} \subset G_i$ then there is $T_q \subset F_{i+1}$ such that $U_{q/(x)} \cong T_q \otimes_R R/xR$, for some prime ideal q of R with $x \in q$. Now assume $f_i : G_i \longrightarrow F_{i+1} \otimes_R R/xR$ is the induced isomorphism. Then

$$\cdots \longrightarrow F_i \otimes_R R/xR \xrightarrow{e_i} \cdots \longrightarrow F_1 \otimes_R R/xR \xrightarrow{e_0} 0 :_A x \longrightarrow 0$$

is a minimal flat resolution of $0:_A x$, where $e_0 = g_0 f_0^{-1}$ and $e_i = f_{i-2}g_{i-1}f_{i-1}^{-1}$, for all $i \geq 0$. This completes the proof of theorem.

The next easy corollary is in fact an important "change of rings" result on flat dimension (which we write as f.dim).

COROLLARY 2.7. If A is an Artinian R-module and x is a non-unit and non-zero divisor of R such that A = xA then

$$f. \dim_R A \ge f. \dim_{R/xR} (0:_A x) + 1.$$

For the remaining part of this section, we shall assume that (R, \underline{m}) is a local ring with maximal ideal \underline{m} and dimension d.

Let $H_m^d(R)$ denotes dth local cohomology module of R with respect to the ideal \underline{m} . In [4] it was proved that if R is Cohen-Macaulay then $f. \dim_R H_{\underline{m}}^d(R) = d$. The next theorem presents a minimal flat resolution for $H_{\underline{m}}^d(R)$ when R satisfies (S_n) . For $n \in \mathbb{N}$ we say that R satisfies (S_n) if $\min\{\text{ht}p, n\} \leq \text{depth}R_p$ for all $p \in Spec(R)$.

THEOREM 2.8. If (R, \underline{m}) satisfies (S_n) then $\pi_i(p, H_{\underline{m}}^d(R)) \neq 0$ implies that $\min\{htp, n\} \leq i$, for all $i \geq 0$.

Proof. Let

$$\cdots \longrightarrow F_i \longrightarrow F_{i-1} \longrightarrow \cdots \longrightarrow F_0 \longrightarrow \mathrm{H}^d_{\underline{m}}(R) \longrightarrow 0$$

be a minimal flat resolution for $\mathrm{H}^d_m(R)$. In view of [2, Theorem 7.1.3], $\mathrm{H}^d_m(R)$ is an Artinian R-module so it is cotorsion. Hence, as mentioned before, $F_i = \prod T_q$, for all $i \geq 0$. We will show that if T_p appears in the product of F_i then $\min\{htp,n\} \leq i$. If $T_p \subset F_0$ then (2.2) shows that $p \in \mathrm{Att}_R(\mathrm{H}^d_m(R))$. Hence, by using [2, Theorem 7.3.2], we have $p \in \mathrm{Ass}_R(R)$ and finally $pR_p \in \mathrm{Ass}_{R_p}(R_p)$. Thus $\min\{htp,n\} \leq \mathrm{depth}R_p = 0$. So assume inductively that $k \geq 0$ and the result has been proved (for all choices of R and A satisfying the hypothesis) when i = k; let p be a prime ideal of R and let T_p appear in the product of F_{k+1} . If $p \subseteq Z(R)$ then there is $q \in \mathrm{Ass}_R(R)$ such that $p \subseteq q$. Thus $\min\{htp,n\} \leq \min\{htq,n\} \leq \mathrm{depth}R_q = 0 \leq k+1$. Now assume $p \not\subseteq Z(R)$. Hence there is a non-zero divisor $x \in p$ such that $\mathrm{H}^d_m(R) = x\mathrm{H}^d_m(R)$; since

$$\bigcup_{q \in \operatorname{Att}_R(\operatorname{H}^d_{\underline{m}}(R))} q \subseteq \bigcup_{q \in \operatorname{Ass}_R(R)} q = Z(R).$$

By using (2.5) and (2.6) we know that $T_p/xT_p = U_{p/(x)}$ appears in the product of the kth term in a minimal flat resolution of $0:_{H_m^d(R)} x$. We

show that all conditions are preserved by R/xR and $0:_{\mathrm{H}_{\underline{m}}^d(R)} x$. It is easy to see that R/xR satisfies (S_{n-1}) . It is enough to show that $\mathrm{Att}_{R/xR}(0:_{\mathrm{H}_{\underline{m}}^d(R)} x)\subseteq \mathrm{Ass}_{R/xR}(R/xR)$. The exact sequence $0\longrightarrow R$ $\xrightarrow{x} R\longrightarrow R/xR\longrightarrow 0$ induces the following exact sequence

$$\mathrm{H}^{d-1}_{\underline{m}}(R/xR) \longrightarrow \mathrm{H}^{d}_{\underline{m}}(R) \xrightarrow{x} \mathrm{H}^{d}_{\underline{m}}(R) \longrightarrow 0.$$

Also, the following sequence is exact

$$\mathrm{H}^{d-1}_{\underline{m}}(R/xR) \longrightarrow 0 :_{\mathrm{H}^d_{\underline{m}}(R)} x \longrightarrow 0.$$

Hence,

$$\begin{array}{cccc} \operatorname{Att}_{R/xR}(0:_{\operatorname{H}^d_{\underline{m}}(R)}x) & \subseteq & \operatorname{Att}_{R/xR}(\operatorname{H}^{d-1}_{\underline{m}}(R/xR)) \\ & = & \operatorname{Att}_{R/xR}(\operatorname{H}^{d-1}_{\underline{m}/(x)}(R/xR)) \\ & \subseteq & \operatorname{Ass}_{R/xR}(R/xR). \end{array}$$

Hence, by the inductive hypothesis min $\{ htp/(x), n-1 \} \le k$. So that min $\{ htp, n \} \le k+1$. This completes the inductive step. The theorem follows by induction.

COROLLARY 2.9. If (R, \underline{m}) is Cohen-Macaulay ring then

$$\pi_i(p, \mathcal{H}_m^d(R)) \neq 0$$

implies that $htp \leq i$, for all $i \geq 0$.

Proof. By the preceding theorem and Lemma 3.1 in [6] we obtain a minimal flat resolution for $\mathrm{H}^d_m(R)$ as follow

$$0 \longrightarrow \prod_{\mathrm{htp} \leq \mathrm{d}} T_p \longrightarrow \prod_{\mathrm{htp} \leq \mathrm{d}-1} T_p \longrightarrow \cdots \longrightarrow \prod_{\mathrm{htp} \leq 0} T_p \longrightarrow \mathrm{H}^d_{\underline{m}}(R) \longrightarrow 0. \ \Box$$

The following corollary can be considered as an special case of [11, Theorem 3.1].

COROLLARY 2.10. Let (R, \underline{m}) be a Gorenstein ring. If $\pi_i(p, E(R/\underline{m})) \neq 0$ then ht $p \leq i$ for all $i \geq 0$.

References

- [1] L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385–390.
- [2] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- [3] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189–209.
- [4] _____, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), 179–184.
- [5] ______, Minimal pure injective resolutions of flat modules, J. Algebra 105 (1987), 351-364.
- [6] E. Enochs and O. Jenda, On Cohen-Macaulay rings, Comment. Math. Univ. Carolin. 35 (1994), 223–230.
- [7] E. Enochs and J. Xu, On invariants dual to the Bass numbers, Proc. Amer. Math. Soc. 125 (1997), 951-960.
- [8] I. G. MacDonald, Secondary representation of modules over a commutative ring, Symposia Mathematica 11 (1973), 23–43.
- [9] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528.
- [10] L. Melkersson and P. Schenzel, The Co-localization of an Artinian module, Proc. Edinburgh Math. Soc. 38 (1995), 121–131.
- [11] J. Xu, Minimal injective and flat resolutions of modules over Gorenstein rings, J. Algebra 175 (1995), 451–477.
- [12] _____, Flat covers of modules, Lecture Notes in Mathematics 1634, Springer-Verlag, Berline, 1996.

Imam Khomeini International University

P. O. Box 288 Qazvin, Iran

E-mail: s_payrovi@yahoo.com