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STRUCTURE OF THE FLAT
COVERS OF ARTINIAN MODULES

SH. PAYROVI

ABSTRACT. The aim of the paper is to obtain information about
the flat covers and minimal flat resolutions of Artinian modules over
a Noetherian ring. Let R be a commutative Noetherian ring and
let A be an Artinian R-module. We prove that the flat cover of A
is of the form J[ . Attp(a) Tp» Where T is the completion of a free
R,-module. Also, we construct a minimal flat resolution for R/zR-
module 0 :4 z from a given minimal flat resolution of A, when z is
a non-unit and non-zero divisor of R such that A = zA. This result
leads to a description of the structure of a minimal flat resolution
for Hy,(R), nth local cohomology module of R with respect to the
ideal m, over a local Cohen-Macaulay ring (R, m) of dimension n.

1. Preliminaries

Throughout this paper, R denotes a commutative ring with non-zero
identity and M an R-module.

Let us recall briefly some notions defined in [3, 4, 11]. By terminology
of Enochs in (3], a linear map ¢ : F' — M with F flat is called a flat
precover of M if Hompg(G, F) — Hompg(G, M) — 0 is exact for all
flat modules G. If furthermore any linear map f : F — F such that
¢f = ¢ is an automorphism of F, then ¢ : F — M is called a flat cover
of M. It was proved that the flat cover of M exists and is unique up to
isomorphism (see [1, 3]). Also, if M has a flat precover F, then M has
a flat cover which is a direct summand of F'.

DEFINITION 1.1. A minimal flat resolution of M is an exact sequence
(1) RN TNy NN N (I / RN )

such that for each 4, F; is a flat cover of Im(d;).
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An R-module C is called cotorsion if Exth(F, M) = 0 for all flat
modules F'.

For the remaining part of this paper, we shall assume that R is Noe-
therian.

Note that for any injective R-module E, by Matlis’ theorem [9], E is
a direct sum of indecomposable injective modules such that each of them
is in the form E(R/p) for some prime ideal p. In general we do not have
a similar result for any flat R-module. But if F' is flat and cotorsion R-
module, then it was proved in [4] that F is uniquely a product F' = [[ 7).
Here T, is the completion of a free R,-module with respect to the pR,-
adic topology. Also note that a flat cover of a cotorsion module is flat
and cotorsion, and the kernel of a flat cover F' — M is cotorsion (see
[4]). Therefore, in (1.1), for all 4 > 1, F; is flat and cotorsion, and then
it is a product of such T,,. For ¢ = 0, Fp is not cotorsion in general. But
we take its cotorsion envelope (or equivalently pure injective envelope).
The pure injective envelope PE(Fp) of Fj is flat and cotorsion [5, p. 352].
Hence, PE(Fp) is a product of Tj,.

DEFINITION 1.2. Assume M has a minimal flat resolution as (1). For
¢ > 1 and prime ideal p of R, m;(p, M) is defined to be the cardinality
of the base of a free R,-module whose completion is 7}, in the product
F, = [[Ty. Fori =0, mo(p, M) is defined similarly by using the pure
injective envelope PE(Fy) instead of Fp itself.

We note that the m;(p, M) are homologically independent and well-
defined. We call the m;(p, M) the dual Bass numbers.

2. The main results

Let us recall basic facts concerning a secondary module respectively
secondary representation of a module, for the details see [8]. An R-
module S # 0 is called secondary if for each a € R multiplication by a
on S is surjective or nilpotent. When this is the case, r(Anng(S)) = pis
a prime ideal of R, in these circumstances, we say that S is a p-secondary
R-module. Let X be an R-module. A secondary representation of X
is an expression for X as a sum of finitely many secondary submodules
of X. Such a secondary representation X = S; + --- + S, with S;,
pi-secondary and 1 < ¢ < n of X is said to be minimal precisely when
Pp1,-*+ ,Pn are n different prime ideals of R and for all j = 1,--- ,n we
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have S; Z?:l,i;é y S;. We say that X is a representable R-module when
it has a secondary representation. The set {p;,--- ,pn} depends only on
X and called the set of attached prime ideals Attg(X).

The following result is essential in the proof of (2.2) and we quote it
for the convenience of the reader.

LeEMMA 2.1. [8, 2.8] Let A be a representable R-module and let a be
an ideal of R. Then A = aA if and only if there exists x € a such that
A=1zA.

Proof. The ‘if’ part is obvious. Hence we shall prove the ‘only if’ half.
If A # zA for any z € g then by using [8, 2.6], & C Upcasty(a)p- Since
Attg(A) is a finite set, there exists p such that a C p, p € Attg(A). Now,
in view of [8, 2.5], there is a proper submodule B of A such that p =
Anng(A/B). Hence aA C pA C B & A contrary to the assumption. [

THEOREM 2.2. Let A be an Artinian R-module and let F = [[ T, be
the flat cover of A. Then T, appears in the product of F if and only if
p € Attp(A).

Proof. By using [12, p.63] A is cotorsion. Hence, as mentioned before,
F is flat and cotorsion. Thus, in view of [4, p.183], F = [[ T, where
T, is the completion of a free R,-module with respect to the qR,-adic
topology. Assume that T}, appears in the product of F. It follows from
[7, Theorem 2.2] that k(p) ®g, Homg(R,, A) # 0, where k(p) denotes
the residue field of R,. So that pR,Homg(R,, A) # Hompg(Rp, A). On
the other hand, by using [10, Theorem 3.2}, we have that Hompg(R,, A)
is a representable R,-module and

Attr,(Hompg(Rp, A)) = {qR, : ¢ € p,q € Attr(A)}.
Now (2.1) shows that there is not any element z € pR, such that
cHomp(Ry, A) = Hompg(Ry, A). Hence pRp C Ugeatty, (Homp(Rp,A)) Q-
Thus pR, € Attgr,(Hompg(R,, A)); since pRy, is a maximal ideal of
R,. Therefore, p € Attgr(A). Conversely, if p € Attg(A) then pR, €
Attg,(Hompg(Rp, A)). Hence k(p) ®g, Homg(Rp, A) # 0. Thus mo(p, A)
# 0. So that T}, is a direct summand of F. The result follows. O

Let (R,m) be a local ring, let E(R/m) be the injective envelope of
R/m, and let F' = [] T, be the flat cover of E(R/m). In [12, Remark
4.4.9], Xu has proved that, if p is a minimal prime ideal of R then T,
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appears in the product of F. Also, at that time, this problem “for a
prime ideal p, when T, appears in the product of F” was a question for
him. The following corollary give an answer to the above question.

COROLLARY 2.3. Let (R, m) be a local ring and let F = [[ T, be a
flat cover of E(R/m). Then T, appears in the product of F' if and only
if p € Assg(R).

Proof. We know that E(R/m) is an Artinian R-module with
Attg(E(R/m)) = Assp(R). Thus by using (2.2) the result follows. O

In the remaining part of this section, we are primarily concerned with
minimal flat resolutions of Artinian R-modules.

THEOREM 2.4. Let A be an Artinian R-module and let x© be a non-
unit and non-zero divisor of R such that A = xA. If p is a prime ideal
of R and x € p then for all i > 0,

Torfﬁ(k(]_o),Homﬁ(}_EI—,, 0:a1)) X Torffl(k(p),HomR(Rp, A))
where R = R/zR, p = p/(x) and k(P) denotes the residue field of R.
Proof. Let
F* . —F%4%.F ... S F%4-—0

be a minimal flat resolution for A. In {7, Theorem 2.7] it was proved
that

--+— Hompg(Rp, F;) — - -— Hompg(R,, Fo) lel—>H0mR(11?1,, A)—0

is a minimal flat resolution of Hompg(R,, A) as an R,-module. Suppose
that K=ker dy. The commutative diagram
0— K — Homg(R, Fy) — Hompg(R,,A) —0
1T 1T 1T
0— K -— Hompg(R, Fy) — Hompg(R,,A) —0

in which the rows are exact, induces an exact sequence
T T x
0 ‘Homp(Rp,Fo) T — O ‘Homp(Rp,a) 7 — K/7K
z
— Homp(R,, FO)/THomR(Rp, Fy).

But 0 :Homg(R,,F) T = 0; since Hompg (R,, Fo) is a flat R,-module
and z/1 is a non-zero divisor of R,. We show that Hompg (R,, Fy) /§
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Hompg(R,, Fy) = 0 (or equivalently F;,@Rp Hompg(R,, Fy) = 0). By
using (2.2) we have Fy = quAttR(A) Ty , so that

Ry ®p, Homp(Rp, Fy) & R,/zR, ®r, Homp(Ry, [[ T

qEAttR(A)

Il (Bo/zR, ®r, Homg(Ry, Ty))

geAttr(A)

~ [] Homg(R, Ty)/zHomp(Ry, Ty) =0

gEAttp(A)

1R

Hence, 0 ‘Homp(R,,4) ¥ = K/$K as Ry- and Rp-modules. Now it is easy
to see that

(2) .-+ — Ry®pg, Homg(R,, F») — Rp ®g, Hompg(Rp, F1) — 0

is a flat resolution for 0 :pomy(r,4) T @S an Rz-module. On the other
hand, we have

€ —
0 ‘Homp(Rp,A) T = Home (Rﬁa HomR(}?’paA))

Hompg, (R ®r Ry, Hompg(R,, A))

Hompg(R, Hompg(R,, A))

Hompg(Rp,0:4 z) = HomR(Rp,HomR(R,O A T))
Homg(Rp,0 :4 ).

IR

IR

IR

So that (2) is a flat resolution of Homg(Rp,0 :4 ) as an Rz-module.
If H;(G*) shows the ith homology module of an arbitrary complex G*
then

Toriﬁi’-(k(g_)), Homz(Rp,0 :4 z)) 2 H; (k(p) ®x, (Rp ®r, Homp(R,, F*)))
= H,((k(p) ®, Rp) ®r, Homg(Ryp, F*))
= H;1(k(p) ®r, Homg(R,, F*))
o Torﬁfl(k(p), Hompg(R,, A)).

The result follows. O

COROLLARY 2.5. Let A be an Artinian R-module and let x be a non-
unit and non-zero divisor of R such that A = zA. If p is a prime ideal
of R and x € p then for all i > 0,

Wi(p/(z)7 0:4 "E) = 7Ti+1(pa A)
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Proof. Assume p is a prime ideal of R such that z € p. In view of [7,
Theorem 2.2] and (2.4) the result follows, that is

mi(p/(2),0 :4 ) = dimy) Torfﬁ(k(z_a), Homy(Rp,0 :4 7))

= dimyp Torfi"_’1 (k(p), Hompg(R,, A))
mit1(p, A). O

In the following we obtain a minimal flat resolution for 0 :4 = as an
R/zR-module by using a minimal flat resolution of A, where z and A is
as in (2.5).

THEOREM 2.6. Let A be an Artinian R-module and let  be a non-
unit and non-zero divisor of R such that A = xA. Let

-——)Fiii—éFi_l——)--'—)FOdo—>A———>0

be a minimal flat resolution for A. Let K = kerdy. Then R/tRQr K =
0 :4 = as R-and R/xR-modules, also the induced complex of R/xzR-
modules and R/xR-homomorphisms

3 -—>F,Q®rR/ztR—---—> Fi®rR/zR— K®r R/zR — 0
is a flat resolution for R/xR-module K ® g R/xR. Furthermore, if
c— GG — - — G042 — 0

is a minimal flat resolution of 0 : 4 « as an R/xzR-module then G; &
Fiy1®r R/zR, for all i > 0.

Proof. The commutative diagram
0— K — Fp — A —0
17 1* 1*
0— K — Fp — A —0
in which the rows are exact, induces an exact sequence

0O:kx—0:pc—0:402 — K/zK — Fy/zFy — A/zA.

Note that z is a non-zero divisor of R and Fj is a flat module hence
0:r x = 0. As mentioned in (2.2), Fy = [[ T, with p € Attg(A). Then
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we have

RerR/zR = ( [ T,)®rR/zR

pEAttr(A)
~ J] (T, ®rR/zR)
pEAttr(A)
>~ [ T,/=T, =0.
z¢p

Thus Fy/zFy = 0, so that 0 :4 ¢ & K/zK as R- and R/zR- modules.
The exact sequence Fo — F} — K — 0 shows that (3) is exact at
K ®gr R/zR and F; ®g R/xzR. If n > 1, the homology module of the
complex

Fi11®r R/cR — F; ®r R/tR — F,_1 ®r R/zR

is isomorphic to Torf(4, R/xR), which is zero since the R-module R/zR
has projective dimension < 1. Thus (3) is exact. Also, F; ®g R/zR is
a flat R/zR-module for all ¢ > 1. Hence, (3) is a flat resolution for
K ®r R/zR. Let

-'——ﬁGi‘qi—ﬁGi_l—%'-‘—-—)Gogg—?OiAl‘—%O

be a minimal flat resolution of 0 :4 x as an R/xR-module. So that
Gi = [1Up(s), where Uy, is the completion of a free (R/zR)p/ (-
module with respect to the p/(z)(R/zR),/(x)-adic topology, since 0 :4

is an Artinian R/zR-module. On the other hand, for all : > 0

Fi1®r R/zR = ([[ T) ®r R/zR = [[ Tp/2Tp = [[ e

Now (2.5) shows that G; and F;{; ®g R/xR have the same factors when
they are written as products as above. More precisely, if T, ®g R/zR C
Fiy1 ®g R/zR then T, C F;1;. Hence, in view of (2.5), G; has a direct
summand as Uy (), where Uy () is the completion of a free (R/TR)p/ (-
module with a base having the same cardinality as that of the base of
the free Rp-module whose completion is Tp,. Thus U,/ ;y =2 T, ®r R/zR.
A same argument shows that if U, ;) C G; then there is Ty C Fj41 such
that U, /(z) = Ty ®r R/zR, for some prime ideal g of R with « € ¢q. Now
assume f; : G; — F; 11 ®r R/zR is the induced isomorphism. Then

- — F;®rR/zR 5 ..- — F1 ®r R/cR % 0:px — 0

is a minimal flat resolution of 0 :4 z, where eg = gofy Land e; =
fi~2gi—-1 i’_ll, for all 4 > 0. This completes the proof of theorem. ]
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The next easy corollary is in fact an important “change of rings”
result on flat dimension (which we write as f.dim).

COROLLARY 2.7. If A is an Artinian R-module and z is a non-unit
and non-zero divisor of R such that A = z A then

f.dimg A > f.dimp/,r(0:4 z) + 1.

For the remaining part of this section, we shall assume that (R,m)
is a local ring with maximal ideal m and dimension d.

Let HZ (R) denotes dth local cohomology module of R with respect
to the ideal m. In [4] it was proved that if R is Cohen-Macaulay then
f-dimgp HY (R) = d. The next theorem presents a minimal flat resolu-
tion for HZ, (R) when R satisfies (S,,). For n € N we say that R satisfies
(S,,) if min{htp,n} < depthR, for all p € Spec(R).

THEOREM 2.8. If (R, m) satisfies (S,,) then m;(p, H%,(R)) # 0 implies
that min{htp,n} <1, for all i > 0.

Proof. Let

--——>Fi——>F¢_1—>---——>F0—>Hgn_(R)——>0

be a minimal flat resolution for Hdm(R). In view of [2, Theorem 7.1.3],

HY,(R) is an Artinian R-module so it is cotorsion. Hence, as mentioned
before, F; = [] Ty, for all i > 0. We will show that if 7}, appears in the
product of F; then min{htp,n} < i. If T, C Fy then (2.2) shows that p €
Attg(H%,(R)). Hence, by using [2, Theorem 7.3.2], we have p € Assp(R)
and finally pR, € Assg,(R,). Thus min{htp,n} < depthR, = 0. So
assume inductively that £ > 0 and the result has been proved (for all
choices of R and A satisfying the hypothesis) when ¢ = k; let p be a
prime ideal of R and let T, appear in the product of Fjy;. If p C
Z(R) then there is ¢ € Assg(R) such that p C ¢. Thus min{htp,n} <
min{htq,n} < depthR, = 0 < k+ 1. Now assume p € Z(R). Hence
there is a non-zero divisor z € p such that H% (R) = zH% (R); since

U ¢c U ¢=2@).
g€Attr(HE, (R)) g€Assgp(R)

By using (2.5) and (2.6) we know that T,,/zT, = 2) appears in the
p/Zlp p/(z)
product of the kth term in a minimal flat resolution of 0 :ya (gy z. We
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show that all conditions are preserved by R/xR and 0 ‘He(R) T I

is easy to see that R/xR satisfies (S,—1). It is enough to show that
Attr/zr(0 'ua () T) C Assg/yr(R/zR). The exact sequence 0 — R

£ 3R — R/xR — 0 induces the following exact sequence
HZY(R/zR) — HL(R) £-HZ (R) — 0.
Also, the following sequence is exact °
Hg_;l(R/a:R) — 0:pg gy ¢ — 0.
Hence,
Attr/zr(0 ug (r) ) C Attror(Hy ' (R/zR))

= Atbr/r(Hy () (R/2R))

c ASSR/ZR(R/xR) :

Hence, by the inductive hypothesis min{ htp/(z),n — 1} < k. So that
min{ htp,n} < k + 1. This completes the inductive step. The theorem
follows by induction. ) O

COROLLARY 2.9. If (R, m) is Cohen-Macaulay ring then
implies that htp < i, for all i > 0.

Proof. By the preceding theorem and Lemma 3.1 in [6] we obtain a
minimal flat resolution for Hgl_(R) as follow

o— [[— ] »—— [] &» — HL(R) —0.0
htp<d htp<d—1 htp<0

The following corollary can be considered as an special case of [11,
Theorem 3.1].

COROLLARY 2.10. Let (R, m) be a Gorenstein ring. If m;(p, E(R/m))
# 0 then htp < i for all i > 0.
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