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INFINITE FLOCKS OF QUADRATIC
CONES-II GENERALIZED FISHER FLOCKS

VIKRAM JHA AND NORMAN L. JOHNSON

ABSTRACT. This article discusses a new representation of the gen-
eralized Fisher flocks and shows that there is a unique flock for each
full field K of odd or zero characteristic that has a full field qua-
dratic extension. It is also shown that partial flock extensions of
‘critical linear subflocks’ are completely determined.

1. Introduction

In Jha and Johnson [2], flocks of quadratic cones are considered within
PG(3,K), where K is an arbitrary field. When K is infinite, the au-
thors develop a net replacement procedure that is called ‘elation-nest
replacement’ or ‘E-nest replacement’. The construction generalizes the
g-nest construction given by Baker and Ebert [1|, when ¢ is a prime
and generalized by [6], for arbitrary odd order ¢q. The translation planes
corresponding to flocks of quadratic cones in PG(3, K') admit an elation
group E with axis £ such that for any line m of PG(3, K) disjoint from £,
EmUZ is a regulus. When K is finite isomorphic to GF(q), the order of
I is q. In general, such an elation group is said to be ‘regulus-inducing’.

In the following, it is assumed that a ‘Baer subplane’ is always a
2-dimensional vector subspace over the kernel field K that is not a ‘line’
of the spread in question.

The translation planes constructed by Payne and, by Baker and Ebert
are constructed from a Desarguesian affine plane X using a regulus-
inducing group E and a kernel homology group H of order (¢ + 1).
Basically, a Baer subplane 7, of ¥ is determined so that FHw, is a
partial spread that covers a set of reguli of ¥ that are induced using F.
If R denotes the reguli sharing z = 0 of 2 remaining that are not covered
by the images of 7, then there is a spread EH7w, UR. In this case, the
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number of reguli in R is (¢ — 1)/2. Payne and Thas [7] have shown that
the only finite flocks of quadratic cones that share a linear subflock of
(g—1)/2 conics are the Fisher flocks and the linear flocks (corresponding
to Desarguesian affine plane). More generally, Johnson [4] has shown
that, in fact, any non-linear partial flock in PG(3,q) sharing a linear
subflock of at least (¢ — 1)/2 conics may be uniquely extended to a
Fisher flock.

Considering what might be a generalization of having such a maxi-
mum linear subflock, we define what we call a ‘critical’ linear subflock
as follows:

DEFINITION 1. Let P be a linear partial flock of a quadratic cone
in PG(3,K) where K is a field. Assume that there is a flock £ in
PG(3, K) containing P. Let the partial spreads corresponding to P and
L be denoted by II and ¥ respectively and note that II C X. Then,
there is a regulus-inducing elation group F with axis ¢ such that X is
a union of reguli sharing ¢ and each regulus is induced from E. These
reguli are called the ‘base reguli’. Note that II is invariant under E so
is also a union of reguli sharing ¢.

We shall say that P is a ‘critical partial flock’ if and only if the
following two conditions hold:

(i) Every Baer subplane within the affine plane defined by ¥ and
disjoint from II intersects each base regulus of ¥ — II in two com-
ponents and there is some Baer subplane which is disjoint from II,
and

(i) if C is a set of distinct reguli sharing ¢, invariant under E, that
covers ¥ — II, then every Baer subplane within ¥ that is disjoint
from II and not in one of the reguli of C intersects exactly two
components of each regulus of C.

REMARK 1. Any linear subset of (¢ — 1)/2 reguli in a spread of
PG(3,q) that is a union of reguli sharing a component £ is critical.

Proof. There are exactly (¢ + 1)/2 remaining reguli and a Baer sub-
plane disjoint from II cannot be a Baer subplane of one of these reguli
and therefore shares 0,1 or 2 lines with each such regulus. However, this
implies that there are exactly two shared lines with each regulus.

There are exactly g(g+1)/2 components in the remaining reguli so if
there is a covering of this set by a set C of reguli such that C is invariant
under E then there are exactly (¢ + 1)/2 reguli in C. If 7, is any Baer
subplane of % that lies within this set and is not within one of the reguli
of C then 7, has g+ 1 components and cannot be an opposite line of any
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of the reguli since 7, is disjoint from £. Hence, if 7, is not a line of one
of the reguli of C, then 7, shares 0,1,2 components of each. However,
since there are but (g +1)/2 reguli, it follows that 7, shares exactly two
components with each regulus of C. (|

In this article, we consider the so-called ‘generalized Fisher’ planes,
defined as those planes of possibly infinite order that may be obtained
using infinite F-nest replacement.

In particular, in Jha and Johnson [2], there is an open question as
to whether there could be two non-isomorphic generalized Fisher planes
arising from different nest replacements using the same field K and
quadratic field extension K[f], where both K and K|[f] are full fields
of characteristic odd or 0. (In this case, a full field is a field such that
the non-zero squares form an index two subgroup of the multiplicative
group.)

Furthermore, we consider non-linear partial flocks containing critical
linear subflocks and ask whether there is an extension to a flock and
whether such extensions are generalized Fisher flocks.

Assuming that critical linear subflocks exist, we are able to show that
any partial flock containing a critical linear subflock may be uniquely
extended either to a linear flock or to a generalized Fisher flock.

Furthermore, we develop a new representation of generalized Fisher
flocks in PG(3, K') using the Galois group of K[| over K, which allows
us to prove in general that there is a unique generalized Fisher flock
over any full field K of characteristic odd or 0 that admits a quadratic
extension full field K[4).

2. Representation of generalized Fisher flocks

In this section, we develop a new representation of generalized Fisher
flocks and, show that, in fact, there is always a unique generalized Fisher
flock when there is at least one in PG(3, K).

We assume that K is a full field of characteristic odd or 0 and that
K[f] is a full field quadratic extension.

Let 0 € Galg K[0], 0 # 1.

LEMMA 1. All elements of K and of {z°~!; x € K[0]} are squares in
K|6].

Proof. Let {1,e} be a K-basis for K[f] such that e> = «, for v a
non-square in K (since K has odd or 0 characteristic, this is possible).
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Then (ea + 3)? = B2 + ya? + 2afe. Hence, if af = 0 then we obtain
either 82 or 7a? and since we have an index two group of squares in K, it
follows that all elements of K are squares in K[f]. Now 27! = zo+1z~2
implying that 7~ is a square since z°*! is in K and a square in K[6]
by the previous argument. O

NOTATION 1. Since 2771 = 22, we write z = z(®~1/2 the ‘positive
square root’.

LEMMA 2. If o is a non-zero square in K then a(®~1/2 =1,
Proof. If a = 62 then §2(°~1)/2 = §7~1 = 1 since §% = 4. O
LEMMA 3. Under the previous assumptions, let b be in the subgroup
of squares in K[]. Then
(077 —1)°*! is square in K if — 1 is a non-square in K
and non-square in K if — 1 is a square in K.
Proof. To see this, note that
(bl—a _ 1)0+1 —9_ (bcr—l + bl—a) _ _(b(l—a)/2 _ b(a—l)/2)2.

We claim that
ba’(a—l)/2 — b(l—a)/2'

This is true if and only if
b2 e=D/2=(1=0)/2 — 7 = p((e=1)/D(E+]) _ pe*-1)/2
which is valid since b is a square in K[6)].

Then,
—(p-9)/2 _ be=1/2)2 is 4 square in K,

implies that

(=1)e=D/2((p(-o)/2 _ b(e=1)/2)2)(e=1)/2
= (—1)oD2p-0)/2 _ plo—1)/2yo-1

(_1)(0—1)/2(ba(1—0)/2 — bo(e=0/2)) /(p1=2)/2 _ b(o—l)/2)
= (=) V2172 _ p(1=9)/2y /(p(1=2)/2 _ b7 1)/2)

(-1)I(-1) = (-1,
which is a contradiction if —1 is a square in K, since then (—1)(°~1/2 =
1. Hence, assume that —1 is a non-square in K. Let v = —1 so that

e? = —1 and e2(@+1)/2 = ¢o+1 = _¢ = 1. Thus, we have completed the
proof of the lemma. O
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THEOREM 1. Let K be a full field of odd or 0 characteristic and let
K|0] be a quadratic extension of K that is also a full field. Let & be
the Pappian affine plane coordinatized by K[6] and let H be the kernel
homology group of squares in 3.

Let s be any element of K[f)] such that s°*! is nonsquare in K if —1
is a non-square in K, and st} is square in K if —1 is a square in K.
Let E denote the regulus-inducing group and H is the homology group
of squares of kernel homologies in ¥.. Then,

EH(y=1zs)U {y =axm;(m+B)° Tt £t g e K}
is a generalized Fisher conical spread in PG(3,K).

Proof. We now take the group H as the subgroup of squares of the
kernel homology group of a Pappian plane ¥ coordinatized by K][6],
and E the regulus-inducing elation group analagous to the finite case.
By Johnson [5], any Baer subplane of ¥, the associated Pappian affine
plane, disjoint from the axis z = 0 of F has the form y = z7m + zn for
m # 0. That is,

EH(y =2°s) = {(y = 2°sb' ™% + za); b is a square in K[f],a € K}.

We first claim that this is a partial spread. Since we have an orbit
under £H, we only need to check that y = z%s is disjoint from all of
the subspaces in the orbit.

Hence, assume that

x%s = x9sb' 77 + z,(a), for some z, € K|6].

Then,

295(1 —b7%) = z,0.
If 2, # 0 then we have

227 ls(1 - b17%) = q,
implying that

(s(l _ bl—a))1+o — a1+a — Oz2.

First assume that —1 is a square in K, so that s**7 is a square in K.
Then, by lemma 3 we have (b1~ —1)°*! is a nonsquare. Hence, this is a
contradiction so we have a partial spread. Similarly if —1 is a non-square
in K then (b!79 — 1)°*! is a square in K but since s°*1 is nonsquare,
we have a contradiction and hence a partial spread.

It remains to show that we obtain a spread. Since we have an as-
sociated Desarguesian spread X, it remains to show that if an element
of EH(y = z°s) nontrivially intersects a component y = zn of ¥, then
this component is completely covered. Now an element of EH (y = z95s)
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is a Baer subplane of &, H is an index two subgroup of the full kernel
homology group H* and H™* acts transitively on the non-zero points of
any components. So, it follows that y = zn is at least ‘half’ covered in
the sense that the given subplane 7, of EH(y = 2%s) intersects y = zn
in a 1-dimensional K-subpace X and X H is covered by images of inter-
sections of the given subplane under H as y = zn is fixed by H. Now the
component y =.zn is in a unique orbit I' of components under the group
E. If 7, intersects two components of I', say ¥y = zn and y = z(n + )
for o, € K, then there is also a 1-dimensional K-subpace X, in 7,
on y = z(n + a,) and a corresponding orbit Xo, H in y = z(n + o).
Note that E commutes with H. The elation 7 : (z,y) — (z, —za, +y)
maps X, H onto X, ,7H. Since X,,7 is a 1 -dimensional K-subspace
on y = zn, it follows that either XH and X,,7H define the same H-
orbit on y = zn or XH UX, -H = {(z,y);y = zn;z # 0}. But, if
XH = X, 7H, then we do not have a partial spread EH (y = z275).

Hence, it remains to show that when an element 7, of FH (y = z%s)
intersects a component y = zn then =, also intersects y = z(n + ) for
some o, # 0.

Since we have an orbit under EH, we may assume that 7, is y = z%s.
Hence, y = zn and y = z%s intersect nontrivially if and only if

Ton =278

for z, # 0. So,
n0'+1 — Scr+1.
Now consider when y = z°s will nontrivially intersect y = z(n + a) for
some nonzero o € K. We claim that there is an intersection if and only
if
80+1 — (’I'L + a)a—i—l’

which is certainly necessary. To see that it is sufficient, we note, by
Hilbert’s Theorem 90, that since (s/(n + a))°*! = 1 then s/(n+ a) =
v177, for some v € K[f] — {0}. So,

17s =v(n+ o),

which implies that y = 2°s and y = z(n + a) nontrivially intersect.
So, if

assume that
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but require that this equation implies that o = 0. We see that the above
equation is equivalent to

o +a(n+n%) =0.

Hence, there are two distinct solutions, 0 and —(n + n?) for « unless
n+n = 0. Let a basis for K[f] be {1, e} such that e? =+, a nonsquare
in K. Then n = e+ p for §,p € K and n? = —n if and only if p = 0.
So, n°t! = —n? = —462. Thus, we arrive at the equation:

57t = 462,

But, s°*! is nonsquare or square if and only if —1 is nonsquare or square
respectively. If s°t1 is nonsquare then —v is square so that —vyd2 is
square in K, a contradiction. Similarly if s°t! is square then —7 is
nonsquare and —v4? is nonsquare, a contradiction.

Hence, we have that there are two intersections in an E-orbit of com-
ponents of ¥ with an element of EH(y = z°s) provided there is one.
This completes the proof of the theorem. O

3. Uniqueness of generalized Fisher flocks

We begin with a general result on André planes.

LEMMA 4. Let K be a field and K[f] a quadratic field extension of
K. Let ¥ denote the Pappian plane coordinatized by K|[0]. Let o denote
the involution in Galx K1[f).

Consider the following André partial spread: Ay={y = zn;n°*! = p}.

(1) Then, A, is a regulus in PG(3, K) with opposite regulus Aj, de-
fined by A = {y =27n;n"t = p}.
(2) AS = {y =2n,0'"%;nt! = p;Va € K — {0}}.

Proof. We note that y = 2°m and y = zn such that mo+! = npo+1
must intersect in a 1-dimensional K-space (a projective point). Further-
more, note that (m/n)°*! = 1 if and only if mn~! = v~ for some v in
K[0], by Hilbert’s theorem 90, as we have a cyclic extension quadratic
extension K|[0] of K with Galois group over K of order 2. Furthermore,
(v,v°m) = (v,vn) if and only if v'1=7 = mn~!. If y = xn, is fixed in
Ap, then y = zn isin A, if and only if y = znov' ™7 for some v. Hence,
every 1-dimensional subspace of y = z”m lies uniquely on some element
y = zn of A, and y = x7m must intersect each element of A,. This
proves part (1).
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Now another application of Hilbert’s theorem 90 gives the proof to
part (2). a

Now assume that we obtain a conical spread obtained via E-nest
replacement.

Then, we must have a Baer subplane of the form y = x°m+xn acting
in place of y = x%s above. The exact same arguement will show that
we only obtain a partial spread EH{y = z°m + zn} if and only if m°+!
is non-square (respectively, square) in K if and only if —1 is non-square
(respectively, non-square) in K.

Now we consider the following mappings that normalize E:

Tap,p : (%,y) — (za,zb+ yapB);a,b € K[0]",B € K*.

Note that 7,93 maps y = z°m onto y = z°ma'~°B. Note that
(mat=9B)°tl = m°*! 32, Thus, since we have a full field, we apply
Lemma 4 so show that for a fixed m:

{n;n°*t is square in K — {0}}

= {mal_”ﬂ; m°*t! is square; a € K[0]*, B K — {0}} ,

{n;n°*! is nonsquare in K — {0}}

= {ma'~?8; m°*! is square; a € K[0]"8 € K — {0}} .

It will now follow that we obtain an isomorphic plane whenever the
basic conditions required for a partial spread above are met.

THEOREM 2. Let K be a full field of odd or 0 characteristic and let
K([6] be a quadratic extension of K that is also a full field. ¥ be the
Pappian affine plane coordinatized by K[6)].

Then, any two generalized Fisher conical spreads in PG(3,K) are
isomorphic.

Proof. The group GL(2, K[6]) is triply transitive on the components
of the spread for . This means that we may assume that in the con-
struction of two generalized Fisher planes, we may assume that we use
the same axis z = 0, regulus-inducing group F and kernel homology
group of squares of X in the same form for both planes. The question
therefore is merely the choice of the Baer subplane 7, to use to form the
partial spread EHr, that induces the spread. But, any two Baer sub-
planes have the form y = 2%m; + n;, for ¢ = 1,2 and m; # 0. Clearly,
we may apply an appropriate elation with axis x = 0 that normalizes
EH to allow n; = 0. Now a partial spread EH, is obtained if and only
if mZ*! is square or non-square exactly when —1 is square or non-square,

1
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respectively. We have shown above that we may apply mappings that
normalize EH and map y = £°my onto y = z°ms. but, then an appro-
priate elation with axis x = 0 will map y = 2%my onto y = z%mgy + zns.
Hence, any two generalized Fisher planes are isomorphic. d

4. Critical linear subflocks

Assume that NV is a non-linear partial flock in PG(3, K) containing
a critical linear subflock P. Let £ denote a linear flock containing P.

LEMMA 5. There is a unique linear flock containing a critical linear
subflock.

Proof. Suppose there are two such flocks and let ¥ and ¥’ denote the
corresponding Pappian spreads defined by the linear flocks and contain-
ing the partial spread II defined by the critical linear subflock. Let m be
a line of ¥’ — 3, so that m becomes a Baer subplane of ¥ disjoint from
II. Hence, m intersects each base regulus of X — IT in two components.
We are finished unless possibly the critical linear subflock consists of
exactly one regulus, which does not occur. Hence, m intersects all but
one base reguli of ¥ in two components, which cannot be the case. [

Now let K[6] denote the quadratic extension field of K coordinatizing
the affine plane given by ¥. Assume that K and K|[6] are full fields of
odd or zero characteristic.

Let o denote the involution in Galx K|[f] and note by Johnson [5]
that any Baer subplane disjoint from the elation axis £ = 0 of F has the
form y = zm + an, for m # 0.

By assumption, we may assume that this Baer subplane 7, intersects
two components of each of the base reguli of ¥ — II, and this Baer
subplane corresponds to a component of the partial spread given by
N —+.

We see by applying (z,y) — (z,—zn + y), we may assume that
n=20.

Now y = z%m intersects y = zn if and only if mot1 = no+!,

Since non-squares exist in K we may choose a basis {1, e} such that
e“ = v, a non-square. Then, the base regulus defined by y = zn is also
defined by y = zen, for some n; in K.

Hence, we must have

2

ma+1 — a2 _ ’Y”%
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has two solutions whenever it has one. Note that (e8+6)°+! = 62 —~42.
There is a solution « if and only if —« is also a solution. Moreover, if
a = 0 then m°*! cannot be —yn?.

Now consider FH(y = z°m), where H is the kernel subgroup of
squares. This is the following set:

{y = 2°b'""m 4+ za; o € K and b a square in K[§]}.

We want to prove that this is a partial spread that covers the base
reguli of intersection. Assume that —1 is a square. We note that m°+!
cannot be —yn?2, for any n?2, so that in full fields, this implies that mo+!
is square. Similarly, if —1 is a square and m°*! cannot be —yn? for
any n%, then, for full fields, this implies that m®t! is a square. In the
following we show that we obtain a generalized Fisher spread; that A is
a generalized Fisher spread.

Take two components m; and my of N'— P and extend each to two
generalized Fisher spreads 7 and g, respectively and note that this is
guaranteed possible by the main theorem of Jha and Johnson [2]. Clearly
as a set of vectors EHm; = EHmsy. We wish to show that m; = 75 and
contain A; any non-linear extension of a critical partial flock may be
uniquely extended to a generalized Fisher flock.

Hence, we may assume that mo is not a component of 7;. We note
that m; and ms are both Baer subplanes of ¥ and as such define reguli
(regulus nets) of ¥. Since N is a partial flock, it follows that Em; and
Emgy are either equal or disjoint (they share only the zero vector). If
these two partial spreads are equal then m; = m9. Hence, Emy and Emao
are disjoint partial spreads.

Since mgy is not in m; as a component and since P is critical, the
regulus R, intersects two components of each of the reguli of 7 — X
defined by the F-orbits of components, which cannot occur since Fmy
and Em; are disjoint.

Note that by property (ii) in the definition of critical subflock, msg
intersects each regulus of my — ¥ in two components. However, Em;
union the axis of E is a regulus of m; — 3, implying that m» non-trivially
intersects Fmq, contradicting the fact that Ems and Em; are disjoint.
Hence, every component of N'— P is a component of the generalized
Fisher spread 7 obtained by use of a single component m;. This shows
that the partial spread may be extended uniquely to a spread. So, we
obtain the following result.

THEOREM 3. Let K be a full field of characteristic 0 or odd and let
K|[0] be a full field quadratic extension of K.
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If there exists a linear critical partial flock P of a quadratic cone then
any non-linear partial flock extension of P may be uniquely extended to
a generalized Fisher flock.

Finally, we note some examples of full fields admitting quadratic ex-
tension full fields. Both of these also appear in Jha and Johnson [3]

EXAMPLE 1. Let P, be isomorphic to GF(p) where p is an odd prime.
Let F be any algebraic field extension of P, which is not algebraically
closed and which is not a series of quadratic extensions of extensions of
P,. Then F is a full field.

ExXAMPLE 2. Let F' be an ordered field which admits an ordered
quadratic extension K such that the positive elements of each field have
square roots in the field. Then both F' and K are full fields.
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