Suppression of Swell Effect in 3.5KHz Subbottom Profiler Data

3.5KHz 천부지층탐사자료의 너울영향제거

  • Published : 2002.08.01

Abstract

3.5KHz subbottom profiling systems are useful for delineating of shallow (up to 10~100m below the sea bottom) geological structure. These systems are generally used to image geological structures with less than 1m of vertical resolution. However swell in the sea is quite often higher than 1m, causing degradation in the quality of the 3.5KHz subbottom profiles. In this paper, we show the quality of digitally recorded data can be enhanced by the suppression of swell effect. Prior to suppression of swell effect, sea bottom detection procedure was applied using the characteristics that the amplitude of sea bottom reflection is high. To suppress the swell effect, we applied moving average method and high-cut filtering method using the extracted water depth of adjacent traces. Acceptable results were obtained from both methods. In the case of bad quality data or shallow data interfered with direct wave, the suppression of swell effect is difficult due to incorrect sea bottom detection.

3.5KHz 천부지층탐사기(Subbottom Profiler)는 10~100m 깊이까지의 천부 해저지층구조를 정밀하게 파악하기 위한 탐사장비이다. 천부지층탐사는 1m 보다 정밀한 해상도를 요하는 탐사이다. 그러나 해상의 파고는 대부분 1m 이상인 경우가 많기 때문에 파도에 의한 너울영항으로 자료의 품질이 크게 저하된다. 본 연구에서는 디지털로 취득된 3.5KHz 천부지층탐사자료에서 너울영향을 제거함으로써 고품질의 지층단면도를 획득할 수 있음을 보였다. 너울 효과를 제거하기 전에 해저면 신호의 진폭이 큰 점을 이용하여 해저면 추출심도를 구하였다. 너울영향을 제거하기 위하여 인접트레이스의 추출심도를 이용한 인접심도 평균법과 고주파 제거 필터링법을 각각 적용한 결과, 두가지 모두 양호한 결과를 도출할 수 있었다. 자료의 상태가 매우 불량한 경우와 심도가 얕아 직접파와 중첩되는 경우 등에서는 해저면 심도추출이 부정확하여 너울영향제거에 어려움이 있다.

Keywords

References

  1. Mar. Geophys. Res. v.20 Reflection coefficient cal-culation from marine high resolution seismic reflection (chirp) data and application to an archaeological case study Bull, J.M.;R. Quinn;J.K. Dix https://doi.org/10.1023/A:1004373106696
  2. Mar. Geol. v.38 Use of high-frequency (3.5-12 ㎑) echograms in the study of near bottom sedimentation processes in the deep-sea: a review Damuth, J.E. https://doi.org/10.1016/0025-3227(80)90051-1
  3. CRC Handbook of geophysical exploration at sea Geyer, R.A.
  4. Geophysics v.61 PC-based acquisition and processing of the high-resolution marine seismic data Lee, H.-Y.;B.-K. Hyun;Y.-S. Kong https://doi.org/10.1190/1.1444096
  5. J. Applied Geophys. v.33 High-resolution marine reflection profiling for engineering and environmental purposes;Acquiring analogue seismic signals McGee, T.M. https://doi.org/10.1016/0926-9851(95)90046-2
  6. J. Applied Geophys. v.33 High-resolution marine reflection profiling for engineering and environmental purposes;Digitizing analogue seismic signals McGee, T.M.
  7. Geosci. Can. v.26 Status and trends of marine high-resolution seismic-reflection profiling: data acquisition Mosher, D.C.;P.G. Simpkin
  8. Seismic Stratigraphy applications to hydrocarbon exploration Limitations on resolution of seismic reflections and geologic detail derivable from them Sheriff R.E.;Payton C.E.(ed.)
  9. Mar. Geophys. Res. v.20 Optimal processing of marine high-resolution seismic reflection (chirp) data Quinn, R.;J. M. Bull;J. K. Dix https://doi.org/10.1023/A:1004349805280
  10. J. Sediment. Res. v.70 High-resolution seismic study as a tool for sequence stratigraphic evidence of high-frequency sea-level changes: latest Pleistocene-Holocene example from Korea Strait Yoo, D.-G.;S.-C. Park https://doi.org/10.1306/2DC40912-0E47-11D7-8643000102C1865D