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On Estimation of HPD Interval for the Generalized Variance
Using a Weighted Monte Carlo Method
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Abstract

Regarding to inference about a scalar measure of internal scatter of p-variate
normal population, this paper considers an interval estimation of the generalized
variance, |2 |. Due to complicate sampling distribution, fully parametric frequentist
approach for the interval estimation is not available and thus Bayesian method is
pursued to calculate the highest probability density (HPD) interval for the generalized
variance. It is seen that the marginal posterior distribution of the generalized
variance is intractable, and hence a weighted Monte Carlo method, a variant of Chen
and Shao (1999) method, is developed to calculate the HPD interval of the generalized
variance. Necessary theories involved in the method and computation are provided.
Finally, a simulation study is given to illustrate and examine the proposed method.
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1. Introduction

In applications the generalized variance of the p-variate normal population, |Z|, is
sometimes used as a scalar measure of internal scatter when p=2 ( || reduces to the
ordinary variance when p=1). It also used to rank distinct groups or populations in order of
their dispersion or spread. For example, a certain article, such as semiconductor, produced by
a number of companies is characterized by a vector of p measurements. Although the same
product is produced on the average, the companies can be distinguished on the basis of their
associated covariance matrices. Thus one can rank the supplying companies by ranking the
normal populations using the generalized variance. The usage of the generalized variance has
been widely accepted by statisticians (see Grizzle and Allen 1969, Press 1982 and Rencher
1995). However, due to complex sampling distribution involved in inferencing |2 |, the
analysis of |2 | is yet to be seen in applied settings.

This paper, therefore, presents a Bayesian approach to coming at a simple inference about
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|2 |. This is done by deriving the joint posterior distribution of the eigen values of V_IZ,
where V is the mean corrected sums of squares and cross product matrices obtained from a
data set. Under the posterior distribution, we are driven to do multidimensional integration to
evaluate marginal posterior summaries of |2 |. Among them the present paper focuses on the
evaluation of the HPD (highest probability density) interval of |X |. Noting that |X] is a
nonlinear function of the eigen values (inducing lack of invariance property), we can’t expect
analytical and exact numerical evaluation of the HPD interval (see Box and Tiao 1992). As an
alternative solution, we develop a weighted Monte Carlo (WMC) method, a variant of Chen
and Shao (1999) method, to compute the HPD interval of |X|. Finally, an illustrative
example is given to demonstrate the accuracy of the proposed method.

2. The Posterior Distribution

Suppose that the random vector X has a p-variate normal distribution, NI,(/J,Z' ), and let
Xi,...,Xn be a random sample of size N on X. Then if
X=L T X ma v= [x-F K-,
the joint density of X and V is given by
(N=-p—2)/2 1 -1 - —_ ,
Bk etr[—72 [V+N X~ (X~ p) ]} @2.1)

where etr{A}= exp{trA}. To assure very little information is actually contributed the
analysis by a subjective prior density, we assume diffuse prior

X, V| w2

P, 2 )oc |Z | TOFV2, (2.2)
Then the joint posterior density is
(3| X, V)< |2 ’<N+ﬁ+”/2etr{——§z—l[ V+ NMX— (X~ u)']}. 2.3)

Integrating (2.3) with respect to x, we have the marginal posterior distribution of 2 :
I X, V~W, " (V,N+p) for N >p, (2.4)

an inverted Wishart distribution with positive definite scale matrix V and N+ p degrees of
freedom (see, for instance, Raiffa and Schlaifer, 1961, p. 227).
Let the eigen values of X are the components of A =(A;,, 4,),

Ay Ay>+> A, > 0, and let the orthogonal decompositions of X and V are HAH and
QLQ’, respectively. Then the joint posterior density function of the latent roots Aj,...,4, of

Y can be derived by using Theorem 3.2.17 of Muirhead(1982):

HAITX, V)=c ﬂ (—f—) (Nm/z](,i) | o etr{——% VHA ‘IH}(dH) 2.5)
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2 ; (N+p)/2 ?
- szl( /11) exp{—-% 1=1( /i,'

where ¢ '= g P2 g i Ijl ¢ i(ﬁl)/zrp{ﬁ/Z}Fp{n/Z}y

)] J5A), A 4, >0,

A=diagld,, Ay, A,), L=diag{ly, I5,10,), 1(A)=[1 (Ai— 4)), and

T (D) =JA) fo(ﬂ)etr{——%(L HAT H - Z’]}z DA )}(dTD with H=QH < O(p),
a group of orthogonal pXp matrices, and I’ 1,( +) is the multivariate gamma function

(Press 1982).

The joint posterior density of A is quite complicated, and hence Bayesian inference about
an arbitrary function of |X|= ﬂIAi is a challenging problem. Specifically, the integral in
=

(25) cannot be analytically evaluated, so that this prevents us using not only exact method,
but a Monte Carlo method for the computation of posterior quantities of |X |. Thus we need
an alternative and simple method for evaluating the quantities.

3. Estimation of the HPD Interval

The basic idea behind the alternative method is described as follows. Let

Rz, )={1Z|: P(1Z]| X, V) = n,} be the (1—a) x100% HPD interval of ||,
where 7, is the largest constant such that Pr(|¥| € R(7,) )= 1—ea. Since exact
marginal posterior distribution of |2 | is not known, we are not able to obtain R(7,).

Therefore, instead of directly calculating the interval, we obtain the interval from the joint
posterior density of &=(8y,+, 6, , where &;>8,>-->8,>0 are the eigen values of

V™% . For this, we derive exact joint posterior distribution of & by choosing a

"simultaneous diagonalization”  transformation. Since |2 |=|V| ,I:[18,~ and R(r,) is
invariant with respect to a linear transformation of |X |, the HPD of If[ISi directly yields

that of | |.

3.1. Posterior Density of Eigen Values of V7ly

The following lemma is useful for deriving the joint posterior density of eigen values of
Vix
Lemma 1. Let £ > 0 and V > .0. Then there exist a matrix C, such that
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CIC =D,y= diag(6,,, 8,}, CVC'=I, and 121=1VII]s,,

where the §;'s are the eigen values of | X—¢6 V |=0.
Proof. The proof is straightforward if we use the simultaneous diagonalization
in Olkin and Tomsky (1981). In other words, let I'Ds" ° be the orthogonal decomposition

of V23V ~12 gndlet C=TI"'V 2 then the results hold.

Theorem 1. Let X, ...,Xy be a random sample of size N on X~ N,(¢,% ). Then, under

the prior (2.2), the joint posterior density function of the eigen values of V!X is

HOTX, V)= cy [To7 49" exp{~ ;"la,-‘l} J8), &>+ 8, 50, (3D
where

o' = xR 2 WD P (N= 1)), (02, 8= (81,8, J=T] (3.~ 8.

Proof. From Lemma 1, we see that , D= CIC =I" 'MI, M= V12 3v=12 and I'is an
orthogonal matrix so that M= TID " ’. Transformation of 2 in (24) to M , we obtain the

posterior distribution of M, M| X, V ~W (U »» N+p ) (see Press 1982, p.120, for the
property of the inverted Wishart distribution). Transforming M to & and utilizing Theorem
3.2.17 of Muirhead (1982), we obtain the joint posterior density of &y,:,8

21X V)=c, Ifla;‘”“”?](a)fo(p)etr{~—§rpglr'}(dn, 8,55 8, 0.

. _1lprn-1pe _ _1 -1 — 1l p-
Since fo(p)etr{ 2I’D,; I’ '}(dD) = etr{ ZD" }fo(p)(dl')—etr{ 2D5 } and

the eigen values of M= vz gyt gg equivalent to those of V_IZ', we have the result.
The distribution in (3.1) enables us to obtain various posterior quantities of the form

BV IT[6) | X v = [ #(vITLsome X, v s G2)

where A( - ) is a real valued function. The integral-type posterior
quantities include posterior mean, posterior variance, higher order moments, and quantiles of

IZ1=V| I:[lai . The HPD interval can be also expressed as a function of the integral-type

posterior quantity under certain conditions: A (1—a) HPD interval of |2 |=|V| ﬂlc?,- is
L.

given by
Ra,)={|VIe: P(E| X, V) = n,), (3.3)
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where &= I:Ilai and &, is the largest constant such that
[ HIViEe Ra)I 81X, V)ds>1-a (34

When P( &| X, V) is continuous and unimodal, a 100 (1— @)% HPD interval is

(&1, &y) where &; and &y are the solution to the following optimization problem

min ¢ ¢ JP(Ey | X, V)= P& | X, VIHIF(Ey | X, M-F&L | X, V)—-(1-al.  (35)
3.2. Weighted Monte Carlo Estimation of the HPD Interval

As seen in (3.1) and (3.5), the analytic evaluation of R(7m,) is not available, because closed
forms of the posterior pdf and df of & are not known. Moreover, computing the HPD interval
is difficult and challenging, because computation of R(m,) requires knowing =z, and then

calculating the content defined by (3.3). Recently, however, Chen and Shao (1999) propose a
simple Monte Carlo (MC) method applicable for the computation of the HPD interval. The
merit of Chen and Shao’s method is that the method does not require a closed-form
expression of the marginal posterior distribution of & . Instead we only need an importance

function of the -joint posterior distribution of & to calculate the HPD interval.

Assume that {8?,j=1,--,m } is an MCMC sample from an appropriate importance
function g(8). Then we can obtain an HPD interval for &= ﬂlé,- as follows: Let
P
{&,, j=1,--,m} be a MCMC sample calculated from (69, j=1,,m }. Also let the &

denote the ordered values of the &, Then the 7th quantile of the marginal posterior

distribution of & can be estimated by

202 { s - (36)
) if gw(k)< r < le(k),

where w(, is the weight function associated with the Ath ordered value &(». More

specifically, we first compute

p(8P | X V)e(8®) (3.7)
le(a(’) | X, V)/e(s?)

Then we rewrite {w, k=1,-,m} as {ww k=1,--,m} so that the kth value of w

Wp=—

corresponds to the kth ordered value &(y. Using (3.6) we compute

Ry(m)= (’E (& m) % ((k+[(l—a)m]))) (3.8)



310 Hea-Jung Kim

for k=1,2,-,m—[(1—a)m] and a 100 (1— @)% HPD interval of & is R ,(m) that has
the smallest interval width among all R (m)’s. Here [ x] denotes the largest integer part of
x. From (3.7) it is easy to observe that it is required to know the joint posterior density
ﬂ(S(“ | 7(, V') only up to a normalizing constant, since this normalizing constant cancels
out in the calculation of w,.

The most natural candidate for an important function g(8) is the joint density of the order
statistics from a random sample of inverse chi-squared variates. Apart from the J(J) term,
the density in (3.1) has the shape of the joint density of order statistics from p independently

and identically distributed inverse chi-squared variates with N4+ p—2 degrees of freedom,

d; e AnE -2, i=1,...,p. This similarity in shape is exploited in developing the

importance sampling procedure.
Under the importance function the Gibbs sampler is consisting of a sequence of truncated

inverse chi-squared distributions, so that, for f=1,...,5, the full conditional distributions are
(8P 16P,...,82,883Y,.,60 P 1~ xp2,a H8P21C 80 <88, (3.9)

where 8= (6,...,8 ,(,’))'. A simple accept/reject algorithm applies for generating the

constrained inverse chi-squared variate 6,(-’). Furthermore, the weight in (3.7) reduces to

wi=J8) 2 6, (3.10)

where J(8¢%)) = Ij(3f/)—31()1))-

4. A Simulation Study

In this section, we study the performance of the WMC estimator of the HPD interval for
|2 | described in the forgoing section. We consider Bayesian inference concerning the
generalized variance of two dependent normal populations. The reason for considering the
bivariate normal population is that an exact confidence interval for |X | is reasonably tractable

by use of Fisher’'s Z transformation. Suppose that N independent observation vectors, X,
i=1,...,N, are drawn from the bivariate normal population Ny(z, X ), where g=(1, 1)
and Z={04,} with o ;=0xp=1 and o =p. Since |Z|=1—p% we can obtain an
approximate confidence interval of [X | by using a frequentist approach: Using Fisher's Z

transformation, we obtain (1 — @) X100% approximate confidence interval for |2 | as
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221 2 1 2
—E— — (G 41
[1 (ez""ﬂ) ! (e”“+1) } @b
1l (1t~ JN—=a _1 1+7\ —
where U,= 2 In( 1_7)+za/2/ N-3, L, 9 ln( 1_7) Zgo/VN—3, and 7

denotes the sample correlation coefficient (see Press 1982). It is not difficult to compute the
(1—a)*x100% HPD interval for the generalized variance using the vague prior (2.2). Assume

that {8'“% ¢ =1,...,m }, m=1000, is a Gibbs sample from (3.9) with p=2 and 1000
burn-in Gibbs iterates. Many standard diagnostic measures (see Cowles and Carlin, 1996 and
Kim, 1999) have been calculated to monitor the convergence of the Gibbs sampling algorithm
and those indicated rapid convegence within 1000 Gibbs iterates. The Gibbs sample yields the

WMC estimator of the HPD interval for |3 |=1—p2% (|V|&% /™ |y |& @ +[0-am)
where (& #'/m g (& +1A=am)y i that of the HPD interval for |V 713 |.
Assuming that (4.1) conveges to the exact confidence interval of |IZ|=1—p? for large

sample ( N = 500, 1000, 5000) and the vague prior (2.2) is dominated by the large sample, we
study convergence of the estimated HPD interval. To study the convergence of

(05,0,)=(VIE®m |y & @& +0-amD)) e define the following mean relative error
(ME):

MEy=E[101— 6 ()l +16y— 8 L)}/ (6 y(a) — 6 (), (4.2)

where (6.(a), 8 {a) ) is the confidence interval (4.1) obtained from a sample of size

N=1000 and the expectation is taken with respect to the posterior distribution of J. Since
the expectation is analytically intractable, we use a standard simulation technique to estimate

this expectation. We run K simulations and then calculate

ME y=El074— 0 (Dl +107,— 0 L)1/ (8 y(a)— 6 ()

for k=1,...,K. Then, MEy is approximated by (1/K) 2} ME y, and simulation standard

error is the square root of the sample variance of the ME y,'s. Table 1 gives the ME y's

with the simulation standard errors for various N, |¥| and 1—ea using K=500. From
Table 1, it can be observed that the disagreement between the estimated HPD and exact
confidence interval is within 10% of the length of the exact one for all cases.
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Table 1. Mean Relative Errors of the Estimated HPD intervals of |X| with Simulation
Standard Errors in Parentheses

1] 1—a (6.(a), (0y(a)) M
N=500 N=1000 N=5000
3% 75 (.3443, .3867) ('6%72141) (:83?3) (9(;3(?121)
90 (.3357, .3963) (_(')%5;% (:gﬁ;) f&fg’g)
95 (:3302, .4024) (.6%52%1) (:83&132) £90302(?7>
64 5 (6115, 6674) (_(')%53214) (:8233—,) {9(?(?153)
90 (5996, .6794) (.(')%5256% (:8332) | {%0’(?191)
95 (5920, .6871) (.6%22%% @8322) {90307112)
84 .75 (8182, .8668) (_6%52%1) (Zgggg) {?53;35)
90 (8072, .8766) (_6%4274?; (jgéﬁg) (902(?155)
95 (.8009, .8326) (b%é%i (:ggig) &90207132)
9% 75 (9432, 9716) (‘6%65571) (:8223) &9()3()2114)
90 (.9360, .9765) (.5%53%1) (28332) fggfo)
95 (9312, .9794) (.6%53%4) (:83%) (95(?131)

5. Concluding Remarks

In this paper we propose a Bayesian method for estimating the HPD interval for |X|, a

scalar measure of internal scatter in p-variate normal population. Other competing measures

proposed for the same purpose include #(Z 2) 12 and  the difference between the largest and

smallest eigen values of X (see Press 1982). Unfortunately, methodology from previous
sections does not apply to calculate the HPD intervals for the other measures, because each of
them is not a function of product of the eigen values of V™3 Thus we may need to
develop other methods for calculating the HPD intervals for them.

However, the methodology proposed in this paper can easily extended to calculate HPD
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interval of a ratio of two generalized variances, |X; |/ |X5|, a linear function of

[Vi'Z, 1/ |V5'3, |, where V| and V, are the mean corrected sums of squares and cross
product matrices obtained from respective samples of two independent multivariate normal
populations with covariance matrices 2, and X, The ratio is a useful criterion for

comparing the dispersion or spread between two multivariate normal populations, and the
extension pertaining to calculate the HPD interval of the ratio is now under investigation.
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