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On the Existence of Maximal Fan Design!)

Hyoungsoon Kim?2), Dongkwon Park3), KyungHee Kim%

Abstract

An n-point design is maximal fan if all the models with #z-terms satisfying the
divisibility condition are estimable. Such designs tend to be space filling and look
very similar to the "Latin-hypercube” designs used in computer experiments. Caboara,
Pistone, Riccomago and Wynn (1997) conjectured that a maximal fan design on an
integer grid exists for any »# and m, where m is the number of factors. In this
paper we examine the relationship between maximal fan design and latin-hypercube
to give a partial solution for the conjecture.
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1. Introduction

Factorial experiments are conducted for simultaneously investigating a number of factors. If
total runs consist of all possible combinations of the levels of the different factors, the
experiment is called a complete factorial experiment. Often the run size cannot be too large to
carry out a complete factorial experiment because of expensive cost and time limitation. For
these reasons, we need to choose a fraction of the possible factorial combinations, which is
called a fractional factorial (hereafter, FF) design.

Our primary concern is how to choose a FF design from full factorial experiments. When
we perform only a fraction of the complete factorial experiment, some factorial effects are
aliased(or confounded) with some other factorial effects. In other words, in order to estimate a
factorial effect, we have to sacrifice other factorial effects. Most of the background theory of
designs is related with regular FF designs that have relatively simple aliased structure.

Regular designs form a subgroup or coset according to defining relation. The aliased
structure for a regular design may be easily determined by using a defining relation. Criteria
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for selecting of an efficient FF design such as resolution (Box and Hunter, 1961) or minimum
aberration (Fries and Hunter, 1980) are based on the number of aliased factors.

Consider a 2°7! two-level FF design, which has three factors( x,,x, and x3) with two

levels 0 and 1, and 2% runs and is determined by defining relation I= x1x9x3. The design
consists of the four points with {(0,0,0), (0,1,1), (1,0,1), (1,1,0)}. The aliased structure is
Xy =Xpx3, Xp=x1%3 and xy3=2xx;. It means that, for example, x;, and x,x; can not be

estimated separately in a full model. A reduced (saturated) estimable model is
y = Bot Bixy+ Boxa + Bax1x;

with estimable set {1,x,x,%x2). One can check that it separately identifies three more
estimable sets {1,x),xq,x3},{ 1,21, x3, 6123} and  { 1,x, x3, 2923 }.

On the other hand, non-regular designs have traditionally been used for screening only main
effects because of complex aliasing. Piston and Wynn (1996) introduced algebraic geometry
ideas into the design of experiments and showed how the theory of Grobner bases(G-bases)
can be used to find a saturated estimable factorial effect(linear polynomial model) for a given
design. This allows the study of “generalized aliasing” in non-regular designs. In section 2,
we introduce the basic fan theory using the algebraic geometry (see Cox, O’Shea(1992) for
details).

Our main results are included in the section 3. In any particular problem we expect to find
a design giving a maximal estimable model. An #n-point design is maximal fan if all the
models with #z-terms satisfying the divisibility condition are estimable. Such designs tend to
be space filling and look very similar to the “latin-hypercube” designs used in computer
experiments. Caboara, Pistone, Riccomago and Wynn (1997) conjectured that a maximal fan
design exists on an integer grid for any #» and m. In this paper we examine the relationship
between maximal fan design and latin-hypercube to give a partial solution for the conjecture.
If an n-point maximal fan design exists on the integer grid {0,1,2,...,#—1}" then the
design should be a latin-hypercube. However, not every latin-hypercube design is a maximal
fan design.

2. Fan Theory

The starting point is to consider a design point as an algebraic variety. Then one may
express the design points as the solution given by the intersection of polynomial ideals.
Given a design d = {xP,...,x™)}, if x=(x,,...,x,) are the independent factors and #(x) is
a polynomial model and g(x),...,&,(x) are the polynomials with respect to x=(x,...,%,)

forming a G-basis then
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HD) = Bs0gn + 7o)

where #(x) is unique and of low order than gi(x). The equation forces p(x)=n(x) for all x
in the design d.

We say that two models(factorial effects) p(x) and po(x) are aliased relative to a design
d and a G-basis if they have the same remainder #(x) with respect to the G-basis or if
they are equal to at all x in the design 4.

Let @ represent the rational numbers and Kd)(or I) be the design ideal for a given
ordering 7. The set of all remainders is in one-to-one correspondence with the quotient ring
Ax,,...,x,)/1. In addition the dimension of the vector space Q[x,...,x,]/I is exactly equal

to the number of distinct experimental design points. Pistone and Wynn (1996) stated the fact,
and we'll give a full proof in Theorem 2.1.

Theorem 2.1 The dimension of the vector space @Q[x,,...,x,]/I is exactly equal to the

number of distinct design point # those used to define the ideal I.

Proof : Note that the ideals defined by each design point has co-dimension 1, that is,
dim(Qx,, ..., x,,)/I({p}))=1. Therefore it is clear that the dimension of the vector space

Qxy, ....x, )/ (II0 « + - NO1,) is less than or equal to n where I;= I({p;}).

We will show that the dimension is equal to # using induction. For the case n=1, it is
obvious. Now, we assume that our assertion holds when #n=g¢. Then the dimension of
Axy, . .x, /(L0 - - ND) is equal to ¢g. Let [,.; be the ideal generated by another
distinct design point p 4, = (b),...,0) € Q" and I=1N "+ + « N1,;.

Since the design point p,.; is distinct from py,...,p,, there exist distinct coordinates, say
@y, ...,aq such that a; is a coordinate of p;, (1=1,...,¢) and a,;=*b; . Then the
polynomial Ax) = (x; —ayXx;,—ay,)+ *+ - (x;,—a,). Clearly belongs to LN - - - NI, but it
does not to I since Ap,+1)*0. (Note that Ax)elp) < Ap)=0). Therefore the dimension
of INn---N0I/I is at least one and hence the dimension @[x,,...,x,l/I is at least ¢+1.
According to the previous assertion, we have dim(Q[xy,...,x,)/LN - « NI, )=¢+1 and

this completes the proof.

A vector-space basis of the remainder set Q[x,,...,x,]/I is calculated as the set of terms
not divisible by any leading term in the G-basis. It follows that @[ x,,...,x,]/I is the set of

all models identifiable by the design with respect to the ordering r. In particular the elements

of a vector space basis of Q[x,...,x,]/] gives the terms of a saturated model identifiable
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using d. This is the set E, ., called a leaf of d and the remainder is a linear combination of
elements of E;.. The leaf E,, depends on ordering 7. The collection of E,, for all r is
called the fan of d. A leaf should satisfy divisibility condition( D) which is that if a term
x=x"+ + +x," is in E,, then every term which divides x* is also in E,,. As we

mentioned before, the size of a leaf is always equal to the sample size #» of distinct points
and leaves are saturated.

Let F(d) be the fan of the design d and E(d) be the set of models satisfying the D
-condition and with # terms and such that their design matrices at 4 are invertible. We say
that the elements of F(d) are algebraically identifiable and elements of E(d) are identifiable
in a statistical sense. Caboara, Pistone, Riccomago and Wynn (1997) stated F(d) S E(d), we
give a full proof in Theorem 2.2.

Theorem 2.2 Let E;. = {p(x),....0.x)} be a particular leaf of the fan of 4. Then the
design matrix
X(E,;.) = {ﬁj(x(’))}zj=l

is invertible.

Proof : Suppose that X(E;., is not invertible. Then the column vectors are not independent,

that is, there exists (a;,...,,) which are not all zero such that
ap(xN+ .. tap,(x?) = 0, for all i=1,2,...,n.

This implies that the polynomial ap(0)+... +ap,(x) is an element of the ideal I
generated by the design d. Therefore we obtain the equation a;p(x)+...+a,p,(x)=0 in the
vector space @[x]/I. This contradicts the linear independency of p;,....,p, and the proof is

completed.

3. Maximal Fan Design

Caboara, Pistone, Riccomago and Wynn (1997) proved that a maximal fan design with n
distinct points in m dimensions always exist when the range of levels of the factors is not
restricted. However, because the situation is not realistic, they conjectured that a maximal fan
design on the integer grid {0,1,2,...,n—1}" exists for any n and m. Such designs tend to
be space filling and look very similar to the "latin—-hypercube” designs used in computer
experiments. From some examples the conjecture looks very affirmative.

In this paper we examine the relationship between maximal fan design and latin—hypercube
to give a partial solution for the conjecture. If a maximal fan design exists, then the design
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should be a latin-hypercube. However, not every latin-hypercube design is a maximal fan
design. Also, the following theorem shows that the size of the integer grid cannot be smaller
than n in order to make d a maximal fan design.

Theorem 3.1 Let d be a maximal fan design with n distinct points on the integer grid

{0,1,2,...,n—1}" . Then it is a latin-hypercube.

Proof : If d is not a latin-hypercube, then the same number appears in a certain component,
say x,, of the points in d. This implies that there are the same rows in the design matrix

X(E) = {1),-(:6('))}Zj=1 where E={1,x4 %%, ...,x/" !}, and hence d cannot be a maximal fan

design. By the contrapositive statement, the theorem is proven.

Examples of n(=3,...,8)-point maximal fan designs on the integer grid. 0,1,2,...,n—1}* are
shown in Figure 1. Those designs are found by an exhaustive search with computer. We
easily verify that the designs are latin-hypercubes by looking and the assertion in Theorem
3.1 is justified.

The following proposition eliminates the special latin-hypercubes which are not maximal fan
designs.

Proposition 3.1 Let m=2, #>6 , and d be a design on the grid {0,1,2,...,72—1}* consists
of n distinct points which lie on any two straight lines. Then d is not a maximal fan design.

Proof : Suppose that every point of d lies on either ax;4bx;=c¢; Or asx;+bsxy=c, , then it

satisfies the equation

0="(ayx1+bx2— c1) (azx)+byxy— C3)

=C1Cy— (dl Co + azcl)xl - (blcz + bZCl)xZ + alazxf + blbzx%+ (a1 bg + dzbl)xlxz

This implies that the design matrix X(E) where E={1,x,,x% x;, x1%2, x5} is not invertible.

Therefore d cannot be a maximal fan design.
4. Conclusive Remark

For the case m=2 and n=6, we may separate 84 cases out of 136 non-maximal fan designs
of latin hypercube type by simply checking if the design points are on any two straight lines.



352 Hyoungsoon Kim, Dongkwon Park, KyungHee Kim

3 °
: . |
| |
| e
| |
1} ® i
! |
\ 1‘ .
‘7 ~1 o B 2 6‘ :“ I "_ ‘;‘
<n=3% ZA$+> <n=4% A %>
4 [ 5 o
4 ®
3 [ ]
3 @
2 ®
2 [
|
1®
19
+ SRR * - — * -
1 2 3 4 1 2 3 4 5
<n=5% 3 $> <n=6%0 4>
7 ®
6 [
6 ®
s o
5 ®
. ®
a @
®
3 3 o
2 1 e )
0 1 °
o - S .
1 2 3 4 5 6 7
<n=7%0 ZA$> <n=8%1 A $>

Figure 1. Examples of n-point maximal fan designs on the integer grid {0,1,2,...,n—1}?
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For the case n=5, we could not apply the proposition directly. However, a similar result can
be drawn. If d is a design on {0,1,2,3,4}? consists of the points on any two lines with
slopes a and -a, then it cannot be a maximal fan design. There are 52 non-maximal fan
designs among 120 latin-hypercubes on the grid {0,1,2,3,4}> for the case m=2, n=5. And 31
out of 52 non maximal cases can be separated by the fact mentioned above.

For the case of higher dimension ( m=3) we have similar result with larger n. Fixing n=6,
the proposition can be generalized for higher dimensional case by substituting ‘two lines’ to
‘two hyper planes whose projections on a coordinate plane are lines’.

In fact, many different maximal fan designs would exist. They can be divided by different
types. If one can be obtained by rotation or reflection from another then we call them of the
same type. Figure 2 represents the different types of maximal fan designs when n=4. There
are only one type of two dimensional 3-point maximal fan designs and five types for 4-point
case ; but the numbers glow rapidly as n grows.

In our mind, we easily guess that a latin-hypercube type maximal fan design exists because
the number of latin-hypercubes increases rapidly as n increases and we prove that a maximal
fan design should be a latin-hypercube. However, the proof for the conjecture is still open for
us. A main difficulty to prove the conjecture arises from the irregularity of the number of
models with n terms which satisfies the D-condition, say p(n). Note that p(n) is just the
number of partitions of positive integer n. Its generating function is Aq)=II ,.p{1—¢") ", and
we can compute p(n) for fixed n, but we don't have any general formula for p(n) yet. We
refer to Andrews(1976) for details on the theory of partitions.

So far we dealt with designs on a square grid {0,1,2,...,n—1}". But in most of the
practical experiments the grid for a design may not be a square. So it would be a nice
project to generalize the concept of maximal fan to the case of non-square type grid like

{0,1,2,3,4}x{0,1,2}.

number of | number of
number of | number of | different | different p(n),
n latin maximal types of types of | number of
hypercubes |fan designs latin maximal | partitions
hypercubes |fan designs
3 6 4 2 1 3
4 24 20 7 5 5
5 120 68 23 11 7
6 720 584 115 81 11
7 5040 3820 694 495 15
8 40320 37716 5282 4800 22

Table 1. The number of n-point maximal fan designs on the integer grid {0,1,2, ce,n—1})2
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Figure 2. Five different types of 4-point maximal fan designs on the integer grid {0,1,2,3}?
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