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Abstract

We introduce a new concept of & conditionally independent and positive and
negative dependence of bivariate stochastic processes and their corresponding hitting
times. We have further extended this theory to stronger conditions of dependence
similar to those in the literature of positive and negative dependence and developed
theorems which relate these conditions. Finally we are given some examples to
illustrate these concepts.

Keywords and phrases : hitting times, conditionally independent and positive and negat
ive quadrant dependence, conditionally stochastically increasing(decreasing)

1. Introduction

Lehmann[12] introduced the concept of positive(negative) quadrant dependence together
with some other dependence concepts. Since then, concepts of this dependence have
subsequently been extended to stochastic processes in different directions by many authors.
After this a number of aspects of dependence notions have been studied for several decades.
For a bibliography of available results see Friday[9]. Recently Ebrahimi [7] defined that

{(X(D=(X (), X,(P) | te A} is positive(negative) quadrant dependent (PQD(NQD)) if

P( ,Q( T{a)>x))=2(<) ,ljl P(T{a)>x;)
where T;(a;)=inf {t€ A | X;(§) € a;0<t<0}, i=1,2.

Consider a system of two components with random time T;(a;)and Ty(a,), operating in an
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environment which is characterized by an abstract(idealized and unobservable) parameter
f=R*. Suppose that Iy, I, and]; partition R™ such that LULUL=R" and that when
f=1,, the operatiﬁg environment is classified as being "average” or "normal”

whereas when 61, or I; the operating environment is classified as being "mild” or

"harsh,” respectively, then, we can seek conditional inequalities for system reliability. That is,
we can obtain that

P( ;Q T{a) x;l0=l)) = lljl P(T{a)>x6l),
P( IC] T{a)>xl0sl)> zljl P(T{a)>x;| 6L, and

P( ,Q Tda)>xibsl;) < 113 P(T{a)>x|0ch).

We have extended this theory to stronger conditions of dependence similar to those in the
literature of positive and negative dependence and developed theorems which relate these
conditions. Furthermore, these results are of value as they help us to understand in what
ways the hitting times for dependence structures of hitting times can be inherited from the
corresponding processes.

In this paper we introduce a new notion of & conditionally independent and positive and
negative dependent defined over bivariate stochastic processes. Bivariate stochastic processes
are not unconditionally dependent or independent but are probably dependent or independent,
depending on some other conditioning process. This paper lays the foundation for a new
concept in the theory of dependent stochastic processes and the groundwork for incorporating
this stochastic nature into dependence theory by defining stochastic dependence, proposing a
measure of stochastic dependence and developing theorems based on this concept.

In Section 2, some of notations, properties and definitions are given, in Section 3, we prove
some theorems which help us to identify conditionally independent and positive and negative

dependence on I;, I, and I;. Moreover, it is shown that @ conditionally independent and
positive and negative dependence on I, I, and I3 is closed under limit in distribution,

transformations of increasing functions, convolution. Finally we are given some examples to
illustrate these concepts in Section 4.

2. Preliminaries

In this section we present definitions, notations and basic facts. Suppose we are given

two-dimensional stochastic processes { X(H=(X;(),X,(H) |t A}, where the index set
A is a subset of R, =[0,)]. The state space of X(#) is the cartesian product

E=E,XE,, which will be a subset of two-dimensional Euclidean space R% For any states
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a;€E; i=1,2, we define the random times as follows
T;(a)=inf{te A |X,(H) <a,0<t<0}, i=1,2,
that is, T;(a;) is the first time that the process X, (# reaches or goes below a,[6]. If we

base the dependence between two stochastic processes on the dependence of their hitting
times, we then have the following definitions.

Definition 2.1. The stochastic process {(X;(H,X,())|te A} is 6 conditionally inde
pendent and positive and negative quadrant dependent (CPQD(CNQD)) on I;, I, and I3 if

(@) P(Ti(a))>t, Ty(ay)> 1 60€l)=P(T(a)> t;| 0 ) P(Ty(ay)> t,| 6 1)),

() P(Ty(a)> t, T ay)> ;10 )=P(Ty(ay)> t10€ L) P(Ty(ay)> t| 8 I),and

() P(T\(a)>t, Ty(ay)> L1 0 L)SP(T (a)> e ) P(Ty(ay) > | 8 Ly)

for all t], t2, ai and a,.

Definition 2.2. The stochastic  process {(X,(#), X,(H))|te A} is @ conditionally inde
pendent and positive and negative associated on I, I, and I3 if
(@) Cov(f(Ti(ay), Ty(ay)), g(Ti(a)), Ty(ap)) | 61)=0

() Cov(f(Ti(ay), Toay)), g(T(ay), Ty(ay)) | 6= ;) =0, and

() Cov(f(T\(ay), Tx(ay)), g(T(ay), Ty(ay)) |0 13)<0

for all increasing functions f and g for which the covariance exists and «; and as.

Lemma 2.3. Let f and g be increasing functions of X,(H and X,(#, respectively. Then
Definition 2.1 implies

(@) Cov( AT (ay), T(ay), &(T(ay), Ty(a) | 61)=0

(b)Y Cov(A(Ty(ay), Tay), g(T,(a;), Ts(ay)) | 8= I,)=0, and

() Cov(ATi(a1), To(ay), g(Ti(a1), Tz(ap)) | € I;)<0

Proof. This follows by an extension of a proof of Ebrahimil6].

Definition 2.4. The stochastic process {X,(#)|te A} are @ conditionally right tail
dependent(CRTD) on {X;(H|te A} on I}, I, and I3 if

(@) P(Ty(a2)> t;, 1 Th(ay)> 1), 8 I}) is constant in ¢ for all £, a; and ay,

) P(Ty(ay) > t; | Ty (a))> t;), 8 I,) is increasing in # for all 4, a; and a,, and

() P(Ty(as)> t, 1 T (a))> ty), 0 ;) is decreasing in £ for all t, a; and a;.

Before introducing the main results let us present some basic properties of conditionally
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independent and positive and negative quadrant dependent stochastic process. It is not difficult
to show that :
Property 1. Non-decreasing functions of @ conditionally independent and positive and

negative quadrant dependent on I;, I, and I; are @ conditionally independent and positive
and negative quadrant dependent on [;, [, and I3

Property 2. Any subset of @ conditionally independent and positive and negative quadrant

dependent stochastic processes on I, I and I3 are € conditionally independent and positive
and negative quédrant dependent on I}, I, and I5.

Property 3. A set of @ conditionally independent stochastic processes on I}, I, and I; are
@ conditionally independent and positive and negative quadrant dependent on I, Iy and I3.

Property 4. The union of & conditionally independent and positive and negative quadrant

dependent stochastic processes on I;, I and I3 are @ conditionally independent and positive
and negative quadrant dependent on I, I, and I;.
Proof. Let the stochastic processes {(X; (), Xo(D))|ts Atand {(Y,(D, Yy ())lIte A} be

independent, each of which is @ conditionally independent and positive and negative quadrant
dependent on I;, I, and I3. Then

PUOY(Ty(a)> 1), [\(Si (B> s) 10<1)

= P((\(T(a)> 1) | 6= 1) PO[\(S4 (50> 5 | 0= 1)
= T P(Ty(a)> 41 6= 1) LP((Si(60)> 54l 0= 1)

> ML P(T(a)> 41 0= 1) TLP(Si(8)> 511 6<1)

s/]jlp( Ti(a)> tj| € ) ;IiIAP(Sk(bk) >l 0e ).

Let {X(D |teA}and {Y(H |t=A}be two vectors of stochastic processes, of dimension wm
and n respectively. Then we have the following definition.

Definition 2.5. The stochastic process {X(# |t€A} is @ conditionally stochastically
increasing(decreasing) in the stochastic process {Y(HlteA} (X(H 1est. in Y(&H) if
E(f( (a)| S(b)=3s, 6) is increasing(decreasing) in {Y(#) |[t€A} for all real valued
increasing functions f and @6.

The following theorem gives a sufficient condition for € conditionally independent and

positive and negative associated on I, I, and 1.



On the conditionally independent and positive and negative dependence of bivariate stochastic processes 371

Theorem 2.6. Let (a) {(X,(#), X,;(H)te A} given {¥(f)|t=A} another stochastic
processes be @ conditionally independent and positive and negative associated on 11,'12 and I3
and (b) {X;(# |te A} be stochastically increasing in {Y(d |t€A} and {X,(#) |t A} be
conditionally stochastically increasing in {¥(8|teA)} given 6 I,, constant in {¥() |t A}
given 6fe<1I,,and § conditionally stochastically decreasing in {¥Y(#) |teA} given 6€ 13 or
(bY) {X;(H|te A} be 8 conditionally stochastically increasing in {Y(# |t A} given f& I,,
constant in {¥Y(#) |teA} given @<1I,,andf conditionally stochastically decreasing in
{(Y(D |teA} given O3 and {X,(#) |te A} stochastically increasing in {Y(9 |t€A}.
Then {(X;(D , X,(H))| te A} is 6 condition ally independent and positive and negative
associated on Ij, I, and Is.

Proof. Cov(f( T, (ay)), g(Ty(ay)) |01

= Cov (E(f(Ty (a0, S(b), E(g(T,(a))lb<sl;, S(b)))

+ E(Co(f( Ty (a1), &(Tz(az)) |6 I, _S(b))

The first term on the right is non-negative when 61, zero when 6& I; and non-positive
when 6= I; by (b) and (b') for increasing f and g For such f and g the second term is
non-negative when @& [, zero when @< I;, and non-positive when @& I3 using assumption
(a). Thus, it follows that {(X;(8, X,(9)|teA} is 6 conditionally independent and positive

and negative associated on Ij, I, and Is.

For proving the next theorem we need the following definition.

Definition 2.7. The stochastic process {Y(D |t€A} is @ conditionally stochastically right
tail dependent in the stochastic process {X(# |t€A} onl}, Land; if E(A T a)|
S(b)> s, 8) is constant, increasing, and decreasing given 61, I, and I3, respectively, for

any real valued increasing f.

Theorem 2.8. Let (a) {X{(d|teA}, i=1,2,---,m be 6 conditionally independent and
positive and negative quadrant dependent on I;,I, and I3, (b) {Y/(DlteA}, I=1,,n be
conditionally independent given {X(?) |t€A} and 6 and (c) Y(#) be @ condition ally
stochastically right tail dependent in {X(# |t€A} onl}, I, and I3, for all [=1,2, -, n.
Then (2) {((X(#, Y())|te A} is O conditionally independent and positive and negative
quadrant dependent on I, I, and I3 and (i) {X(9 |teA}is @ con ditionally independent and

positive and negative quadrant dependent on I}, I, and I3.
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Proof. () P([\(Tu(an> ), [\(Si(6)>5)|0< 1)
= PC)(S:)3 )| [(Tula> 8, 6 DR [\(Tu(an)> )1 0= 1)

= TLP(SA6)> ) [\(Ta(a> 1), 6= DA [N (Tu(an)> t1 6=T)

using (b),
= L PCscopysio=h) T M(Tian> tlo= )

> M1 P(stb>sioen) I P(Tan> ul o=1)

< II:IIP( S{b)>sl6ely) J_ij( Tap)> tlosl)

using (c) and (a)
(7z) By making t—0 (k=1,2:-,m) in (7), (i) follows.

3. Theoretical Results

Barlow and Proschan[3] and others have considered a number of alternative notions of
dependence and studied the relationship among them. Motivated by this we now extend the
multivariate stochastic dependence to stronger conditions of dependence.

The next theorem demonstrates the preservation of & conditionally independent and positive

and negative dependent property on I;, I; and I3 under limits,

We now show that @ conditionally right tail dependent implies @ conditionally independent

and positive and negative quadrant dependent on I}, I, and I3.

Theorem 3.1. Let {(X; (9, X,(H)|lte A} be 6 conditionally right tail dependent on I, I,
and I, then {(X,(9,X,(H)te A} is O conditionally independent and positive and negative

quadrant dependent on I;, I, and Is.
Proof. P( Tl (dl)> tl’ Tz(dz)) tzlgE I,)
=P(T1 (dl)> tIIHEI,-)P(Tz(aZD tzl T1(01)> 0, QEL‘)

'—'Jl__z_I‘P( Tj(dl')> t;lﬁe ]1)
ZIﬁP(Tj(d,')> t,l@EIz)

S]ﬁp( T,-((l,‘)) tjlgelg)
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making #—0.

Theorem 3.2. Let {(X,(#),X,;(§))|te A} be & conditionally independent and positive and
negative quadrant dependent on I}, I, and I3 and f; and f; are non-negative incr
easing functions, then {fi(X;(9))|teA}land {L(X,(D)|te A} are 6 conditionally indepe
ndent and positive and negative quadrant dependent on I, I, and I;.
Proof. Pl(inf{#A1(X{(D)<a;})>#, (inf{H (X, (D) <ay})> ;| 6= 1}]
= AL(inf {1 X, () <A (a)D> 4, Ginf (1 Xp() <fy ' (a)})> bl 6= 1))
=P(T (A (a)> by, To(fy (a))> 1 61

= I A7, (@) 1)l 6= )
= 1 ACnt (17X, (0) <a)> t) 6 1]
= [L AT (@) )l 6< )
= TL AL Cinf (47X, (8) Sa)> 1 6e 1)

< ﬁlp< Ti(f7 (a)> )l 6= 1)

1=

= 1 A Gt A (X (D) <a)> t) 6]

We show that the theorem demonstrates preservation of the conditionally independent

and positive and negative quadrant on [}, I; and I; among the random times under limits.

Theorem 3.3. Let {X,(# |t A} be 6 conditionally independent and positive and nega
tive quadrant dependent on [;, Iy and I, 2-dimensional stochastic vectors with distribution
functions H,— H weakly as »n—occ, where H is the distribution function of a stochastic
process {(X,;(H,X,())te A}. Then {(X,(H,X,(H)te A} is 8 conditionally independent
and positive and negative quadrant dependent on I;, I; and Is.

Proof. For any #, t, writing {X,()= (X, (9, X0,(D)|ts A}, n=1

P(Ty,(a))> ty, Ty.(ap)> t10€1)
= ’l‘i_r)r(}oP( T1.Ca)> b, Ty,(az)> H10e)

— tim I[P(T,,(a)> 1|6 11)=113P(T,-(a,~)> tloe )

n—oo j=
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> tim [1P(T,(a)> 410€ 1) = T P(T,(a)> f16< 1)

n—00 =

< lim P(T,-,,(a,)) tj|0€I3)=]liIlP(Tj(aj)> tjleelg).

n-—>00 j=

The following theorem provides a characterization of conditionally right tail dependent in
the bivariate case.

Theorem 34. Let the stochastic process {(X;(#),X,(D)|t=A}. Then X,(» is &
conditionally right tail dependent on X () on I, I, and Iy © P(Ty(ay)> t;| T\(ay),

osL)? in ¢4 for all &, P(Ty(a)>t|Ti(a)>H,0€h)]in ¢ for all ¢, and
P(Ty(a)> t,1 Ty(ay)> 4, 1)) is constant in ¢ for all £, & E(f(Ty(a))| Ti(a))> 4

0L, E(f(Ty(a D Ti(a)> t,0l) |, E(f(Ty(a))l Ti(a)>t, 0<1;) is cons tant
in #; for all real valued increasing f.

Proof. {X,() |te A} and {X,(D |te A} 6 conditionally right tail dependent on I;, I, and
Iy © P(Ty(a)> | T(a)>,0el)! in ¢ for all ¢, P(Ty(ay)> I Ti(a))>t, 6€l)l
in # for all ¢ and P(Ty(ay)> ;I T\(a)>t,0<1) is constant in ¢ for all £ by
Definition2.3 & P(Ty(az) =t T(a,)> 4, 6€L,) 1 in tifor all £,

P(Ty(ay)=t T\(a)>tH 6sh)]in t for all t, and P(Ty(ay) 26| Ti(a))> 4, 0€1) is
constant in ¢; forall ;. Now assume

E(f(Ty(a D Ty(ay)> 4, 0e) 1,
E(f(Ty(a ) T\(a)> 4y, 0el;) | ,and E(f(T;(a))| Ti(a;1)> t, 81}) is constant in #; for

all real valued increasing f. Putting A T3(a2)) =1{1,(a)>s) , it follows that

P(Ty(a))=t| T\(a))>t,0L,)t int for all ty, P(Ty(ay)=tl Ti(a))>t, 0€l;) | in ¢ for

all t, and P(Ty(ay)=tlTi(a,)>t, <)) is constant in # for all #,. Conversely,
suppose Eliru:ulTi(a)>t,0eD), E(I i1l Ti(a)>h,0€L)1,a n d

E(I(1,00y2601 T1(a1)> 4, 8€1)) is constant in t; for all #, then E(f( Ty (@) Ti(a;)>
t,0€)?, E(f(Ty(a D Ti(a)>t,0)l, and E(f(Ty(a )| T\(a))>t,0€l) is

constant in #; for all real valued increasing f Using the monotone convergence theorem

Chungl4] the same is true for every non-negative increasing f. Consequently, the result hold

for every increasing f.
The following theorem exhibits a conditionally right tail dependent preservation property.
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Theorem 35. Let (a) {X;(f)lteA} be @ conditionally right tail dependent in
(X, (0 lte A} given {¥Y(H|teA} on I, I, and I;. Then {X,(PH|[teA} is & condi
tionally right tail dependent in {X,(#) |t A} on I}, I, and ;.

Proof. Let #>¢# . Then by (a)

P(Ty(a)) =t T (a)=t, 6l,)
=EP(Ty(ay)> 1T (ay)> t, 8, S(b))
>EP(Ty(ay)> 1 T\ (a)> ty, 6L, S(b)
=P(Ty(ay)> 1T (a)> ), 6 L3) for all &,
Similarly, one handless the cases for f=1; and I;.

Next, we show that conditionally independent and positive and negative quadrant dependent

on I}, I, and Ij is invariant under transformations of increasing functions.

Theorem 3.6. Let (a) ((X;; (8, X (), i=1,2,>-,n are = conditionally independent
2-variate processes with increasing sample paths, (b) ((X ; (9, X »(#)) are 8 condi- tionally
independent and positive and negative quadrant dependent processes on I}, I, and I3 for
each 7=1,-,n, and (¢) f;: R"— R, j=1,2 are increasing functions then the processes

Yi(9), 7=1,2, given by Y;(§)=f,((X;(#), -, X ,;(#)) are @ condition ally independent
and positive and negative quadrant dependent on I;, I, and Is.

Proof. The proof will be given for the case #=2 when f=l,. For the general #, the
proof is similar. For fixed #=0, j=1,2, and introduce the variables V;= X,;(¢;) and
Uj= sup p<s< [i(X 1;(8), X4;(8), 7=1,2, where, for simplicity, ¢, &, have been
suppressed in V; and U, Consider only hitting times of Y;(s)=f;(X1;(s), X,;(s)) given
by

Wi(a;)=inf{s| Y;(s) 2 q;}, j=1,2.

It suffices to show that

P(Wi(a)>t, Wolay)d k10 L)=2P(Wi(a)> 16 l) P(W(ay) > ty | 6 1p).

Note the facts that U;= sup gse<s, /;(X1;(s), V;) and that, by hypothesis, V, and V, are
6 conditionally independent and positive and negative quadrant dependent on I}, I, and I,

Now, we obtain

P(W (a))> t, Wy(ay)> t10€ 1)
ZP(U1<CZI, U2<a2|051,-)
ZEP(U1<01, Uz(dglVl, Vz, QEL)
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>EI] P(U<a,| V,, 0 1)

> P(W<a| v, 6 1) = [T P(Wia) > 116< D).

Similarly, one handless the cases for I, and I

Next we show that conditionally independent and positive and negative quadrant dependent

on I;, I, and I3 is preserved under convolution.

Corollary 3.7. If (a) {(X;(#),X,(#)|teA} is O conditionally independent and positive
and negative quadrant dependent on I}, I, and I3, (b) {(Z,(9),Z,())|teA} is @ conditionally
independent and positive and negative quadrant dependent on [;, I, and I3, (c) and

(X (9, X(9)
and (Z\(#), Z,(#)) are independent and have increasing sample paths, then X;(H+ Z,(#) and

Xy(D+2Zy() are 6 conditionally independent and positive and negative quadrant dependent
on I, I, and I.

4. Examples

Example 1. Consider a bivariate process {(X,, Y, )l #=1} such that (X, Y}),(X,, Y5)
,** are independent and X; and Y,,i=1,2,:--- are @ conditionally independent and
positive and negative quadrant dependent on /l;, I, and I;, Then we have the following

theorem.

Theorem 4.1. Consider a bivariate processes {(X,, Y,)l#n=1} is @ conditionally
independent and positive and negative quadrant dependent on I}, I, and 1.
Proof. Let P(T)(x)> n,, Ty(y) = ny 01
=P(Xpx, Xpx, - X,0x, YDy, Y, 209lI)
Now consider the following cases.

Case 1. »n;= n,,
P(T\(x)> ny, T2(y)>n,l 01
=P(Xpx, Ypyl0esL) P(Xydx, Y yl0el) - P(X > x, V) y|0€T)
=P(Xpx, Xpx, X0x0el))P(Y )y, Yody, Y dvl0l)
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= 1]iIlP( T:(x)>nil0s 1)
2P(X1>x, e ,Xm)xleelz)P( Y1>y, =, Ym)ylﬁelz)

= I P(T(®)> nd 0= 1)
SP(Xpx, -, Xpoxl0shL)P(YDy, -, Y, »yl0el)

= sz;P( T:(x)>nl6el)

The proof of the 7n,{#y; and n;=n, is similar to Case l.

Example 2. Consider a simple form of econometrical model relating the investment and

capital gain. Let X,(#) and X,(¢), t A, denote respectively the investment and capital gain
at time £ The model is

Xi(t)=aX,()+Z, (D 4.1)

where a>0, Z;(t) is a white noise process independent of X;(¢), and X,(¢) is @

conditionally independent and positive and negative associated dependent onl;, I, and I3

Then, it is clear that X;(¢#) is @ conditionally independent and positive and negative

associated dependent on I;, I, and I;. Now, for any increasing functions f and g,

COU(f(Tl(Cll), Tz(az)), g(Tl(al), (Tz(az))leeli)
= Cov (f(T1(d1)+S1(b1), Tz(dz)), g(T2(01)+Sl(b1), Tz(az))leeli).

The last term is non-negative when @€ I, zero when 6#e&1I;, and non-positive when
f=l; by assumption for increasing f and g. Consequently (X;(®, X,(9))is 8

conditionally independent and positive and negative associated dependent on Ij, I, and Is.

Example 3. Block et al[4] proposed a bivariate geometric autoregressive model of order
m, BGAR( m),
M(n) n=0,1,2, -, m—1
X(n)= (4.2)
EC(n,q) Gn—q@)+N(n), n=m, m+1,-,

where M(n)= (M, (n), M,(n)) is a sequence of independent bivariate geometric random

vectors with mean (o7}, p2 ), 1, $200. C(m, @) is a 2X2 random diagonal matrix with

C(n’ Q)zdiag{]l(n’ Q)! ]Z(na Q)}; q=1y 2, rer, M.
We assume that for /=1, 2,



378 Jong Il Baek and Kwang Hee Han

2P Un, D, i, m) ="} =1=a,(n)

and that
P{J(n, 1), -, Ji(n, m))=0"}=a,(n).
The following theorem gives the result about dependence structure of the bivariate process
BGAR(m), X(n)=(X,;(n), Xy(n))

Theorem 4.2. Suppose for j=0, 1, -**, m—1, the random variables X,(7)and X,(;) in
(4.2) are @ conditionally independent and positive and negative associated dependent on I;, I,
and I;. Then X(») is @ conditionally independent and positive and negative associated

dependent on I}, I, and Is.

Proof. This follows by an extension of a proof of Block et all4].

Example 4. Consider a system with two components which is subjected to shocks. Let
N(t) be the number of shocks received by time ¢ and let Z,(H)= %1){ o Zo(f)= %31 Y; be
1= 1=

total damages to components 1 and 2 by time ¢, respectively. Here X; and Y, are damages

to components 1 and 2 by shock 7, respectively. Then we have the following theorem.

The following theorem is very important in recognizing conditionally independent and
positive and negative quadrant dependent on compound distribution which arise naturally in
stochastic processes.

Theorem 4.3. Let (a) N(¢) be a poison process which is independent of X,s and Y,'s given
6, i=1,2,-, ) (X,,Y), (X5, V), be independent, (c)X; and Y; be @
conditionally independent and positive and negative quadrant dependent on I, I, and I3,
i=1,2,, then (Z,(9, Z,(H) is O conditionally independent and positive and negative
quadrant dependent on I, I, and Is.

Proof. P(T\(a;)<t, Ty(a))<il|lsl,)

=P(2X,-zal, Hh<s{oo, 2}”’2“"' h<s{oo|fel,)

N(ty) t)
= P( ZXZaI, Zj Y.>a, |01,

[o]

[ k;
= 2 2 P(N(t)=hy, N(t)=ky|0< L)P( ZX >a,, Z}l Y.2 a0 L)
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o) o k k,
> ;0 EOP(N(ZLI)’—_kl,N(tz)zkzleeIz)P( zZlXiZ dlleelz)P( 121 Y,'zagleelz)

> JllP(T,(a,-)) t16e1,)

Similarly, one handless the case for I and 5.
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