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Comparison of Confidence Intervals on Variance Component
In a Simple Linear Regression Model with
Unbalanced Nested Error Structure

Dong Joon Parkl), Sun-Young Park2 and Man-Ho Han3)

Abstract

In applications using a linear regression model with nested error structure, one
might be interested in making inferences concerning variance components. This article
proposes approximate confidence intervals on the variance component of the primary
level in a simple linear regression model with an unbalanced nested error structure.
The intervals are compared using computer simulation and recommendations are
provided for selecting an appropriate interval.

Keywords : mixed model; inference; least squares
1. Introduction

One of the reasons that statisticians use regression  analysis is to find out linear
associationship between a response variable and predictor variables. They often make
inferences regarding parameters and a variance in a regression model. In applications using a
linear regression model with nested error structure, one might be interested in making
inferences concerning variance components in the model. The simple linear regression model
with an unbalanced nested error structure includes two variance components; one in the
primary level and the other in the secondary level of the model

This article proposes three approximate confidence intervals on the variance component of
the primary level in the model. The model is explained in Section 2. The distributional
property of error sums of squares is obtained in Section 3. The confidence intervals on the
variance component of the primary level in the model are proposed in Section 4. A simulation
study is performed to compare the proposed intervals and recommendations are given for
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selecting appropriate intervals in Section 5. The proposed intervals are applied to a numerical
example in Section 6.

2. A Simple Linear Regression Model With
Unbalanced Nested Error Structure

The simple linear regression model with an unbalanced nested error structure is written as
Y[j=#+ﬁX,j+A,'+ E,',' (21)

i =1,...,L j=1,....];
where Y is the ; th observation in the 7 th primary level, g and f are unknown
constants, X ; is a fixed predictor variable, and A, and E ; are jointly independent normal
random variables with zero means and variances qu and o%, respectively, I>2, J:=1, and
J>1 for at least one value of 7 A; is an error term associated with the first-stage

sampling unit and E; is an error term associated with the second-stage sampling unit. Model

(2.1) is unbalanced since the number of observations in cells are not all equal. This error
structure yields response variables that are correlated. That is,
Gt oy ifi=1, j=7;
Co(Y; Yi) = o4 ifi=7, j*7, (2.2)
0 if i=7,

In order to form confidence intervals on linear functions of the variance components, an
appropriate set of sums of squares is needed. One possible partitioning of model (2.1} is
shown in Table 1.

TABLE 1. ANOVA for Model (2.1)

SV DF SS
Mean 1 7 7..2
Covariate ’
after mean 1 Br(S wea T S we)

Primary units

adjusted for I-1 Rws + Ry
regression
Residual J—I1—-1 Ry

Total J. AN {= Y
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The notation in Table 1 is defined as J = 3%, J, X=X
Y= 3, Y, T, X =2 X T, Y. = o Y T,
Swea= Tl Xi= X i S e =im1 57 (X 5= X 1)%

Swwa= Zist( Xi= X XY= Y )i Sume=2=1( Y, = Y ),

Sume= T Z(X = XNV = Y.), Suma = Sici( Y= Y )Y,

Suwe = T Zli(YV = Y% Bus = S el S unser
B = (SunetSund/(SumatSumd, Br= SunelSuwse R = Sumwa — Bug'S wa
Ri= BwsSum + BrSume — B’ (SumetSuwd, and Rr = Sy — Br'S ume

Model (2.1) is written in matrix notation,
y=Xa+Zu +e 2.3

where y is a J X1 vector of observations, X is a J X2 matrix of known values with a
column of 1’s in the first column and a column of X ;'s in the second column, _@ is a 2X1
vector of parameters with g .and B as elements, Z is a J X[ design matrix with 0’s and
1’s, 1e. Z =€9I,-=1 1., #is an IX] vector of random effects, and e is a J X1 vector

of random error terms. By the assumptions in (2.1) the response variables have a multivariate
normal distribution

y~N(Xa V) (2.4)

where V = 4ZZ + ozE D; and D; is a J XJ identity matrix. In order to define

unweighted sums of squares, the vector of means of response variables of primary level and
associated variance matrix are needed. These are defined in matrix notation as

My = [ —Yl_, _sz',..., ?L]' =y, where
- M = Ii=1[]i_l 1’]fx1]
and Y; is the mean of response variables of the ith primary level. The expectation and
variance of vector of means of response variables of the primary level are E( yy) = Xy a
where Xy = MX and Wyy = caD; + MM since MM = diag(J7'] and
MZ = D; where D;is an IXI identity matrix. Thus, the means of response variables of

primary level have a multivariate normal distribution
yu~ N(Xya Vy (2.5)
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where Vy = o4 D + oM M'.
3. Distributional Property of Error Sums of Squares

In this section we report distributional results used to derive confidence intervals. Four
regression coefficient estimators are considered. Consider weighted between regression

coefficient estimator Z?WB that is obtained from least squares regression of T/i_ on 7(,-. with
weight [J; for éach primary level ¢ and Byug is written as Buyg = S woa | S wexa- The
weighted between regression, coefficient estimator is the second element of the vector
( Xy WXy ' Xy Wyy where W = diaglJ]. The error sum of squares R yp
associated with this regression model is Rug = S, — ?%ZSW,, = YuAw Yu
where Ay=W - WXy( X'y WXy ' X'y W

Unweighted between regression coefficient estimator considering primary level’s means and
their unweighted mean is used as an alternative of between regression coefficient estimator.

Unweighted between regression coefficient estimator % yp is obtained from the least squares
regression of Y; on X ; and Buys is written as Bys = Swse | Swea Where
S e = 21i=1( .)_(i._ ?(..)(?i._ _T/..) S wra = 2’:’=1( -)?i.— ?..)2,

?(“= 1 X/ I and __l;'_,= 3L, Y.,/ I The unweighted between regression
coefficient estimator is the second element of the vector ( Xy  Xu) ~! Xu' yu. The error
sum of squares R ;p associated with this regression model is
Ryps = Supa— %UBZSuxxa= ¥'u Ay yy where Ay = Di— Xy( X'y Xy) _IX'M-

The within regression coefficient estimator %T = S el Sume is obtained from the least
squares regression of ¥ ; on X ; and the grouping variables. The point estimator %T is the
second element of the vector ( X* X" X" y where X' = [ X Z] and( X" X') -

is a generalized inverse of X * X". The error sum of squares KR r associated with this
regression model is Ry = S — ETZSW,,3 = y Ty
where T = Dj;— X' ( x" X))~ X"

Finally, the total regression coefficient estimator B;, = (Sume + S wre)/(Swma + S wee)
is obtained from the least squares regression of Y ; on X ; The point estimator PL is the

second element of the vector ( X’ X) "' X’ y. The error sum of squares R; associated with
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this regression model is Ry = (S, + Supe) — Z?LZ(SWE + Suwe) — Rus — Rr
= y(L — M AyM — Ty where L = D;— X( X X)'X".

Theorem 1. Ry /o% is a chi-squared random variable with J— I — 1 degrees of

freedom.

Proof. Notice that T is idempotent. It can be shown that X (X * X*) - X . X =X
and X ( x" X))~ X'z =2z by Theorem 7.1 in Searle (1987, p. 218). Therefore, as
may be easily verifiedt, T X =0 and 7T Z = 0. It follows that E(Ry) = E(y Ty)
= t{TV)+dX TXa = (J~ I— 1) 0ok The distribution of Ry is determined
by writing Rr /d% = ¥'( T/o%)y and noting ( T/o) V = T(ARZZ + & D;)lcx
= T. By Theorem 2 in Searle (1971, p. 57) R¢/ o‘?g is a chi-squared random variable with

J — I — 1 degrees of freedom.

Theorem 2. If ¢4 = 0, then Ryup /0% is a chi-squared random variable with I — 2
degrees of freedom.
Proof. Notice that Ay Viy = AW — A WXy ( Xy WXy ' Xy W + o% D;

— EWXy (X WXy ' Xy and t{ WXy ( X WXy) 7' Xy W) = k. It
follows that ERw) = E(lyy Apwyy = tH{ Ay Vy) + & Xy Ay Xy_a
= (J — k)oh + (I — 2)0% since Aw Xy = 0. The distribution of Ryg is
determined by writing Rug/ 6% = yu'( Awlch) yu and noting ( Ay/od) Vy
= (d4]o%) Ay + AwMM = (d4/d%) Aw+ Dy — WXyu( Xy WX, ' X, since
WMM = D, Note that D, — W X, ( X}y W Xy) ! X,/ is idempotent. It follows

that R yg /0% is a chi-squared random variable with I — 2 degrees of freedom if & = 0.

Theorem 3. If o= 0, then R/ 04 is a chi-squared random variable with I — 2

degrees of freedom.
Proof. Notice

that Ay Vy = A ( D — Xu( X' X ' X))+ (MM — Xu( Xy Xy) ™!

Xy MM), tri M M) = Z(1/]), t{ Xu( X' Xu) ' Xy MM') = k;, where k
= S P (Xi— XY T /(IS ) and Ay Xy = 0. It follows that E(R yp)
= Flyy Ay yu)= t{ Ay Vi) + a Xy Ay Xy a
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= (I — 24 + (Z{1/];) — ky)o% The distribution of Rz is determined by writing
Ryp |64 = vy’ ( Ay [d%) yy and noting ( Ay /d4) Vi = Ay + (% /cd) Ay M M.
Note that Ay is idempotent. Thus R g / ¢4 is a chi-squared random variable with I — 2

degrees of freedom if o% = 0.

Theorem 4. Rys / 0% and Rr /| 0% are independent and Ryg/ 04 and Rp/ o% are

independent.
Proof. Notice

that M AyM (5 ZZ + 02D;) T= AM AyMZZ T + &M AyMT = |
from the results in Theorem 2. Accordingly Ryp / 0% and Ry / 0% are independent. Note
that M Ay M(AZZ + 6 D,)T = &AM AyMZZ' T + &M Ay MT

= Qusing MT = MMZ T = (OsinceM = MM Zand Z T = 0.

Thus Ry / o‘,24 and Rr/ o% are independent.

Olsen et al.(1976), Thomas and Hultquist(1978), and El-Bassiouni(1994) used spectal
decomposition method to obtain following statistics.

They proposed a statistic SSM = U’ U which is asymptotically chi-squared distributed. In

particular, U’ U /(¢4 + 0%/Aw) = 24— as 05— 0

where U = C* Z(D;-X(X' X) 11Xy, C" is the Moore-Penrose inverse of C,
C = Z(I -X(X X)) 'X)Z 2y is the harmonic mean of positive eigenvalues, A,

of C, Ay = Z;7; [(Z5oy7;/A), and r; is the multiplicity of positive eigenvalue A; Thus,
EU U = (I - 1)(4 + 0%/Ap). It was also shown that U’ U /(c4 + o% /Ay and

Ry /% are independent.

If the covariate values within each group are same, this proposed statistics becomes the
error sum of squares associated with unweighted between regression coefficient and the total
regression coefficient estimator reduces to the weighted between regression -coefficient

estimator. That is, if X; = X, for all j, then SSM = R ;g and %L = %WB. If group

means of the covariate values are all same, ie, X; = X = ?( for all ¢, then Xy

is linearly dependent and 3 we and %UB are not defined.
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4. Confidence Intervals on ¢

The expected mean squares are summarized using the distributional property of error sums

of squares.
E(SZWB) = CIO;Zq + OZE = 0WB: (4.10)
E(S%p) = 4 + oo = Oy and (4.10)
E(SY) = ok = 0 (4.1¢)

where S%p = Ruyp /(I —2), Sip= Rw/U~-2, Sr=R/J—-1-=1),
a= (J— k) /UI—-2), and ¢ = (Z;(1/])) — ky) /(I — 2). The mean square
errors, SZWB and SZUB are independent of SZT and they are exactly chi-squared distributed.
depending on cases where O'?q = () and 625 = ().

In the case where O%q — 0, SZWB and SZT should be used to construct confidence intervals
on O%q. The variance component 634 can be represented by functions of expected mean
squares in (4.1a) and (41c), o4 = (@uws — 67 /c,. An approximate confidence interval on
0% can be constructed using the method of Ting et al.(1990). In particular, the 1 — 2a

two-sided confidence interval for this form of 0'?4 is

1
_clT[(SZWB ~ S — (GiShs + GiSY + GpSsSH %;

1
(S — S + (HiS%Wws + HiSY + H,pS%sSy) °1 4.2)

where Fy = F(ar-25-1-1 Fy = Fg-ar-25-1-1 G = 1 = 1/F (a1-2,0)
Gy = 1 /Fq-gj-1-109—1,

Gp = [(Fi=1= GIFi - G/ F,, H = 1/ Fa-ar-2e — 1,
Hy=1-1/F@-1-1en Hp = [1-F)'~ H F}— H]/F;, ad Fam
is the F-value for #; and n, degrees of freedom with & area to the right. Since ¢4 0,

any negative bound is defined to be zero. Interval (4.2) is referred to as TINGW method.
Another approach is adapting generalized p-values method proposed by Khuri et al.(1998) to

construct an approximate confidence interval on o¢%. It was shown in Section 3 that

(I — 1)S% /(d4 + 0% /Ay is chi-squared distributed with (I — 1) degrees of freedom
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as o% approaches zero, (J. — I — 1)S% /% ~ 2% _ ;_ 1, and they are independent
where S% = SSM/(I — 1). Thus, using this property, the estimators of ozE are obtained
by (JJ. — I — 1)s%/ U, where s% is an observed value of S% and U, has a chi-squared
distribution with (J — I — 1) degrees of freedom. The estimators of oqu are obtained by
(I — 1)s% | Uy, where ¢4 = o4 + 0%/ Ay, sk is an observed value of S%, and U,
has a chi-squared distribution with (I — 1) degrees of freedom. Thus, a generalized pivotal
quantity o4 canr be represented as o4 = ([ — )%/ Uy — (J — I — 1%/ [Ag ULl

Accordingly, an approximate 1 — 2Za two-sided confidence interval for this form of O‘?q is
[CII ) Cl—a] (4.3)

where C, is the ath percentile of the distribution constructed by the generalized pivotal
quantity. Interval (4.3) is referred to as GPQ method.

When 025 approaches zero, SZUB and SZT can be used and O'?q is represented
4 = Ouyg — c,0r from (41b) and (41c). The Ting et al. 1 — 2¢ two-sided confidence

interval for this form of ¢4 is

1
(S — 5% — (GiSYs + 4G3SY + .G 13S%usSH %
1
Sus — ST + (HES'z + CGHEST + cH 3S%sSH) % 1. (4.4)

Interval (4.4) is referred to as TINGU method. Table 2 summarizes the methods proposed in
this section.

If I = 3, then ¢; = 1/c, and ¢; Ay = Ay Thus Shplcp = S% = S%p and
TINGW and TINGU methods are same.

5. Simulation Study

The methods proposed in Section 4 are now compared using simulation study. The criteria
for analyzing the performance of the methods are; 1) their ability to maintain stated
confidence coefficient, and 2) the average length of two-sided confidence intervals. Although
shorter average interval lengths are preferable, it is necessary that the methods first maintain
the stated confidence coefficient. Four unbalanced patterns were selected for simulation study
and are shown in Table 3.
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TABLE 3. Unbalanced Patterns Used in Simulation

Pattern 1 Ji
1 3 3510
2 5 135710
3 7 1246810
4 10 11155551010 10

Let o = o4 /(o + o). Without loss of generality 0% = 1 — 0% so that p = o4
and 1 — p = 6% A; and E; are independently generated from normal populations with
zero means and variance o and 1 — p, respectively, using RANNOR routines of SAS.
Values of g and f are respectively varied from —3 to 3 in increments of 1 so that 49
different combinations of x# and B are used. Any fixed values of X ;'s are given. Then Y
's are calculated according to model (2.1) and Ry, Ry, SSM, and R yp are computed as
shown in Section 3. Simulated values for S%s, S% S%, and S%s are substituted into
appropriate formula and the intervals are computed. Values of o are varied from 0.001 to

0.999 in increments of 0.1. Each value of p is simulated 2000 times for each pattern.
Two-sided intervals are computed based on equal tailed F-values.

Confidence coefficients are determined by counting the number of the intervals that contain
o‘fq. Using the normal approximation to the binomial, if the true coefficient is 090, there
is less than a 2.5% chance that an estimated confidence coefficient based on 2000 replications
will be less than 0.8866. The average lengths of the two-sided confidence intervals are also
calculated.

Table 4 and 5 present the results of the simulation for stated 90% confidence intervals on
0%4. The numbers in the body of Table 4 and 5 respectively report range of simulated
confidence coefficients and average interval lengths and minimum and maximum values for
the range as o ranges from 0.001 to 0.999. Different combinations of x and A do not change
the trend of simulation results and the change of minimum values of stated confidence
coefficients is at most 0.012.
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TABLE 4. 90% Range of Simulated Confidence Coefficients

Pattern 1 2
0 TINGW | GPQ | TINGU | TINGW | GPQ | TINGU

0.001 09005 ]0.9035 05005 }0.8905 |0.89%4 0.87
0.1 0.908 0.9045  |0.908 0.8925 [0.894 0.883
0.2 (0.898 0.9085 [0.898 0.8875 [0.8955  |0.884

- 0.3 10.893 0.904 0.893 0.89 0.896 0.898
04 (09095 [0.905 09095 |0.8845 [0.8985  }0.907
05 (09015 [0.905 09015  0.898 0.8985  |0.905
06 10.897 0.905 0.897 0.838 0.897 0.9045
0.7 (0.899 0.9065 [0.899 08655 [0.896 0.8905
0.8 [0.898 0.907 0.898 0.87 0.897 0.893
09 {08975 {0.905 08975 |0.8635 |0.896 0.8935

0.999 10.902 0.905 0.902 0.872 0.896 0.8925

MAX (09095 09085 [0.9095 {0.898 0.8985  |0.907

MIN [0.893 0.9035 10.893 08635 [0.894 0.87

Pattern 3 4

0.001 1|09 0.908 0.854 0.897 0.899 0.8135
0.1 08965 {0.9095 |0.866 0.901 0.8995 }0.853
02 [0.8955 [0.907 0.388 08845 [0.8985 |0.868
0.3 10.8865  10.906 0.8955 |0.8885  }0.9015 }0.8765
04 (0.863 0.9065 |0.883 0.869 0.905 0.8915
05 (0871 0.904 0.884 0.862 0.902 0.884
0.6 0.865 0.905 0.832 0.8715 0.903 0.891
0.7 108645 09055 {0.895 0.862 09025 10913
08 (08735 j0.901 0.907 0.857 0.902 0.898
09 10.858 0.9005 |0.895 0.841 0.902 0.899

0999 10.8685 |0.8995 09045 0.856 09 0.904

MAX 109 09095  {0.907 0.901 0.905 0.913

MIN [0.858 0.8995 10.8%4 0.841 0.8985 |0.8135

Simulation results are consistent with our study since TINGW

approaches zero while TINGU method performs well as p is closed to one across all four
patterns. Three methods generally maintain stated confidence coefficients across all values of
p for patterns 1. However, only GPQ method keeps the stated confidence coefficients for all
o values of four patterns. The average interval lengths of three methods generate wider
intervals as o increases for all four patterns. For smaller p value, say ©<0.1, in pattern 3

and 4, TINGW method has shortest interval lengths. For other values of p in four patterns,

GPQ method has shortest interval length.

method improves as p
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TABLE 5. 90% Range of Average Interval Lengths

Pattern 1 2
0 TINGW GPQ TINGU TINGW GPQ TINGU
0.001 |44.670385 [4.7037761 |44.670385 [1.6963909 |1.7565652 |2.4211901
0.1 59.306305 [6.203999  [59.306305 [2.3232264 {2.1452094 |2.9775824
0.2 88336569 |7.7152441 |88.336569 |2.9723129 12.5340456 |3.5968303
0.3 10757395 (9.2208541 (10757395 |3.7117547 |2.9165519 14.2278956
04 120.93906 |10.721291 (120.93906 (4.1990992 |(3.2901334 |4.6446833
05 14292995 (12.216601 [142.92995 |4.8447865 |[3.6554658 |5.2186535
06 168.20474 |13.706938 [168.20474 |5.6089767 [4.0127826 |5.7815406
0.7 18553583 (15.192167 |[185.53583 [6.0088214 (4.3633191 |6.2783312
0.8 1216.90426 |[16.673825 |216.90426 |7.0531375 |4.7080909 |7.0924004
09 24596681 {18.151819 |245.96681 |[7.5738493 |5.0491171 |(7.6091444
0.999 [246.10563 [19.612088 [246.10563 [8.4534132 [5.3857702 [8.5034603
MAX |246.10563 119.612088 [246.10563 |8.4534132 [5.3857702 |8.5034603
MIN 144.670385 |4.7037761 [44.670385 [1.6963909 |[1.7565652 |2.4211901
Pattern 3 4
0.001 1]0.8841862 [1.2104748 [1.4681376 [0.3847124 |0.7396307 [0.7652631
0.1 1.3228924 |1.5056313 |{1.8549788 [0.6214983 [0.9254198 |0.9536777
0.2 1.8482663 (1.8000139 |2.327806 [0.8308489 [1.1062396 |1.1387063
0.3 1{2.251486 {2.0867147 |2.6258684 [1.0543185 |1.2748048 |1.3411049
04 (27262211 |2.3635822 |3.127743 [1.2549925 |1.4296433 [1.5096349
05 13.1438896 |2.6303032 13.4974074 |1.4559445 |1.5735124 |1.6897315
06 [3.568139 [2.8878889 [3.7790143 (1.5924883 |1.7080275 |(1.7819612
0.7 14.0057759 (3.1385151 [4.1079702 (1.806329 |1.8377487 (1.9402982
0.8 45275753 |[3.3852496 |(4.5825573 [1.9948288 [1.9655106 |2.0982791
09 |4.7874478 |3.6297314 |4.8973924 |2.2045574 |2.0937172 |2.2359168
0.999 |5.1810588 ([3.8715458 |5.1928903 [2.4126914 |2.2214677 [2.3882471
MAX |5.1810588 |3.8715458 |5.1928903 (2.4126914 |(2.2214677 |2.3882471
MIN |0.8841862 |1.2104748 |(1.4681376 |0.3847124 [0.7396307 |0.7652631

In summary, if <0.1 in pattern 3 and 4, TINGW method is recommended. For other
values of p in four patterns, GPQ method is recommended because it keeps the stated

confidence coefficient and generates shortest average interval lengths.

6. A Numerical Example

The results of the simulation study are applied to a data set. Scheffe (1959, p. 216) wrote a
data set of 94 observations for seven types of starch film and the data set was reproduced
with permission of the author and publisher from Industrial Statistics by Freeman(1942). The
dependent variable in the data set is the breaking strength in grams and the independent
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variable is the thickness
constructed by selecting three types of starch, Potato, Canna, and Wheat. Three observations
are selected from Potato, five from Canna, and ten from Wheat. This data set has the form of
pattern 1 in Table 3 and is used to fit the simple linear regression model of the breaking

in

10 ™ inch from tests of starch film. The data set was

strength on the thickness of starch film assuming an unbalanced nested error structure.

The selected data set was listed in Table 6. In order to apply the methods proposed in

Section 4 to the data set a SAS code was programmed and 90% confidence intervals on 0%4

were calculated. ‘The resulting intervals were given in Table 7.

TABLE 6. The Data Set Used For The Example

Type | Obs. 1 2 3 4 5 6 7 8 9 10
Y 983.3] 958.8| 747.8
Potato
X 13.0 13.3] 10.7
Y 791.7{ 610.0f 710.0| 940.7} 990.0
Canna
X 7.7 6.3 86] 118 124
Y 263.7| 130.8| 382.9] 3025| 213.3| 132.1| 292.0f 3155 262.4| 3144
Wheat
X 50 35 49 43 38 3.0 4.2 45 4.3 4.1

From SAS output the estimators ?IAZ and %Ez are computed as 8479.97 and 3063.89,
respectively. Therefore, the estimate of the ratio of variance in primary unit to total variance

?) is 0.7345. GPQ should be used because it keeps the stated confidence level and generates
the shortest interval length among three methods in pattern 1 of Tables 4 and 5. The
calculated interval lengths in Table 7 are consistent with the simulation results in Table 5.

TABLE 7. 90% Confidence Intervals On ¢4

Methods Lower Bound Upper Bound Length
TINGW(TINGU) 2702.9 3359262.4 3356559.5
GPQ 915.6 216887.0 215971.4
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