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Abstract

In this paper, a covariate adjusted logrank test is considered for censored paired
data under the Cox proportional hazard model. The proposed score test resembles the
adjusted logrank test of Tsiatis, Rosner and Tritchler (1985), which is derived from
the partial likelihood. The dependence structure for paired data is accommodated into
the test statistic by using 'sum of square type’ variance estimators. Several weight
functions are also considered, which produce a class of covariate adjusted weighted
logrank tests. Asymptotic normality of the proposed test is established and simulation
studies with moderate sample size show the proposed test works well, particularly
when there are dependence structure between treatment and covariates.

Keywords : proportional hazard model, score test, restricted maximum partial likelihood estimate
1. Introduction

In analyzing survival data, we are often interested in the comparison of two treatments.
According to increasing interest in this area, many important procedures have been developed
for a couple of past decades as shown in Fleming and Harrington (1991) and Klein and
Moeschberger (1997). Especially the class of weighted logrank tests and its various extensions
have been studied extensively and it led the logrank test to become the most widely used
one.

Moreover, Cox (1972) proposed the proportional hazard regression model and it was found
that the logrank test could be derived from the Cox’s model based on the partial likelihood
method. Counting on the proportional hazard model and the partial likelihood, the covariate
adjusted logrank test was originally proposed by Tsiatis, Rosner and Tritchler (1985).
Adjustment of covariates have also been studied by many other researchers such as Lin and
Wei (1989), Slud (1991), Gu and Ying (1995), Kong and Slud (1997) and Lin, Yao and Ying
(1999) under the proportional hazard model and Lin (1992) under the accelerated life time
model.

The procedures proposed by the aforementioned studies can be applied to the independent
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sample case. In many clinical trials, however, we might encounter paired data such as couples
of eyes, twins and litters of rats. Jung (1999) and Jeong (1999) treated the logrank test for
paired censored data in the absence of covariate. Huster, Brookmeyer and Self (1989)
developed a parametric procedure with covariate adjustment for paired data under the
Clayton-Oakes model (Clayton 1978, Oakes 1982). For more general multivariate data, Wei, Lin
and Weissfeld (1989) presented a marginal approach based on the proportional hazard model.,
and Lee, Wei and Ying (1993) considered the accelerated life time model.

In this paper, we consider a covariate adjusted logrank test for censored paired data under
the Cox proportional hazard model. The proposed score test resembles the adjusted logrank
test of Tsiatis, Rosner and Tritchler (1985), which is derived from the partial likelihood. In
addition to the idea of Tsiatis et al., a modification of the marginal approach proposed by Wei,
Lin and Weissfeld (1989) plays an important role in model construction. This modelling
methods are closely explained and examined in section 2. In section 3, test statistics based on
score statistics are proposed and their large sample distributional properties are studied. The
dependence structure is accommodated into the test statistic by using a ‘sum of square type’
variance, and then simple consistent estimators of the asymptotic variances are obtained. To
assess the moderate sample size properties of the proposed tests, some simulation studies are
carried out and the results are reported in section 4. Concluding remarks are presented in
section 5.

2. Modelling

Consider a clinical trial with n pairs of subjects. Assume members of a pair are randomly
assigned to one of two treatments 1 and 2. Let 7T and C denote failure time and censoring
time of a member. Denote Z to be treatment indicator, Z=1 for treatment 1 and Z=10
otherwise, and W to be p dimensional covariate vector. Assume 7T and C are independent
given treatment indicator and covariates. Define observable time X= TAC, censoring
indicator =X X=T), at-risk process Y(H)=KX=f and counting process
N(H=IX<t8=1). For the member of pair 7 associated with treatment %, we observe a
random vector (X, 04, Zu, Wi), and we assume that the observable random vectors of pair
i, {((Xuy,0u, Zii, Wi, (X, 84, Zoi, Wy,)}, are identically and independently distributed. If the

covariate vector W is time-dependent, it is written as W #). Assume that the members in
each pair are exchangeable with a common marginal distribution.

Two interesting real examples included in such a case were cited in Lee et al. (1993) as
follows:

In a litter-matched tumorigenesis experiment (Mantel, Bohidar and Ciminera (1977)), the
investigator were interested in assessing whether the tumor appearance for the drug-treated
group tend to be shorter than that for the control group. There are two rats (In fact, there
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are three rats in the experiment.) in each of the 50 female litters in the study. In each litter,
one rat is drug-treated and the other is control. Another example is from the Diabetic
Retinopathy Study, a randomized trial conducted by the National Eye Institute to evaluate the
photocoagulation treatment for proliferative diabetic retinopathy (Diabetic Retinopathy Study
Group (1985)). In this study, photocoagulation was randomly assigned to eye for each study
patient, with the other eye serving as an untreated control. One of this study’s main
objectives was to investigate whether the time of occurrence of severe visual loss for the
treated eye is longer than that for the control. Some important eye- and patient-specific
covariates were also recorded.

To analyse such data, we consider the following proportional hazard model proposed by Cox
(1972):

At | Zi, W) = Ag(D ™™ k=1,2;i=1,,n, @1
where A(#| Z, W denotes the conditional hazard function at time ¢ given treatment indicator
Z and covariates W  Ay(f) represents an arbitrary baseline hazard, and B is a common
regression parameter. Under this model, we are interested in testing the null hypothesis of no
treatment effect Hy6=0. In model (2.1), the exponential link function can be replaced with
any other smooth link functions used in Tsiatis et al. (1985), Gu and Ying (1995) and Kong
and Slud (1997), but we will consider only the exponential one for simplicity.

Now, we can think more general model than (2.1). First of all, we can separate £ into
treatment-wise parameters B; and By if necessary. In addition, the popular weight function of

the logrank test, q(#), such as Gehan-Wilcoxon and Peto-Prentice weights, is able to be
included in the model. Such an extended model is given by

At | Zigy W) = Ag(D ™5™ p=1,2,i=1,,n. (2.2)
In this model, we also assume a common baseline hazard.

In the literature, the model (2.1) was originally introduced by Tsiatis et al. (1985) under the
sequential analysis setting. It was also used by Gu and Ying (1995) and Kong and Slud
(1997). The weight function in the model (2.2) was proposed by Lin et al. (1999) in the
sequential tests framework based on the stochastic curtailment. All procedures proposed in the
above researches were devised for the independent sample case.

On the contrary, when multivariate data are given, Wei et al. (1989) proposed a marginal
approach where the proportional hazard model is applied to each failure type or each member
of a pair, not to each treatment. In this approach, they allowed to use different baseline
hazards and separate regression parameters. So, their model for paired data can be given by

At W) =2pDe ™™ r=1,2,i=1,,n, (2.3)
where £k indicates Ath member in each pair and the treatment indicator is included in the

covariate vector W If the treatment indicator is the first component of W, the null hypothesis

of no treatment effect will be expressed by Hy By =8y, where B (k=1,2) denote
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treatment effect for kth member in each pair.

Compared with Wei's model (2.3), the model (2.1) (or (2.2)) is modelling treatment-wise
margins and assumes common baseline hazard. It means that the model (2.1) has a stronger
assumption that treatment-wise marginal distributions under the null hypothesis are equal.
This assumption may, however, be relaxed to some extent if we use separate parameters as
shown in the model (2.2). Though the assumptions of model (2.1) are stronger than those of
(2.3), we expect model (2.1) gives simpler procedure than (2.3) as long as we are primarily
interested in testing the null hypothesis of no treatment effect. In fact, the model (2.1) is
directly focused on testing of the treatment effect @ while (2.3) on the inferences for the

regression parameter A.
In the sequel, main results will be described mainly based on the model (2.1) for
convenience.

3. Test Statistics

We derive the test statistic from the partial likelihood under the assumption that treatment
groups are independent. Huster, Brookmeyer and Self (1989) referred it as an independent
working model. We will also use this term in the sequel. Denote the partial likelihood as

L(8,8) under the independent working model, then the score statistic for testing the null

hypothesis is 7 ~Y2U,(B), where

Uo® = -2 102 (8, Do,

and B denotes the restricted maximum partial likelihood estimate of A under H,. That is, it

is the solution of Ug( B =0, where Ul B =79% log L(0, B).

As shown in Tsiatis et al. (1985) and Gu and Ying (1995), the asymptotic distribution of
the score statistic n ~Y2Uy(B) is derived by approximating Uy(B) with U,B) and U B).

When Z and W are independent, Tsiatis et al. (1985) showed that z Y[ Uy(B)— ULB)]
converges to zero in probability, and that under H;, = _l/ng( B) is asymptotically normally
distributed with mean zero and variance ¢,, which is the limit of Var#n “1204(8)]. More
generally, Gu and Ying (1995) showed that n_l/ZUg( B) is asymptotically equivalent to
w12 Ug(B) — 6.0 U B)], and that under H,, it is asymptotically normally distributed
with mean zero and variance ¢°= 0, szd;,iawz, where o0, and o0,, are the limits of

Covln " VEULB), n ™ V? UgB)] and Varin 12 Ug(B)] respectively. Here ¢,, is the

transpose of vector o0,,. Note that o, equals zero when Z and W are independent.
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The arguments discussed under the independent working model are applied to the paired
data case in the same manner. Only difference is that we should construct consistent
estimators of variance and covariance terms accommodating dependence structure of paired

data in it. To do this, we rewrite the score statistic Ugf) in the counting process notations:

U8 =33 12w~ Z(D1dN() (31)

[ SUBS(B | (D v
7 SiB. )+ S:(B. 0" Si(B. D) Sy(B, 1)

where
2D = TZZuYi(D) explB Wl ] A IV (D) expl8 Wil D) 39
= S1(8, D/[S:1 (B, 0+ S, (B, 1]
and

SKB, t)= n—IZYM( 1) exp[B Wu(D)].

The second equations of (3.1) and (3.2) are obtained by replacing Z;; and Z,; with 1 and 0.

Define the martingales
t
M) =Nu(D— [ Vi) exl8 Wl 9]dAo(9), k=12,

where Ay(# is the cumulative baseline hazard function, then it is shown that Ng(# in (3.1)
can be replaced by M,{? under H,. Hence by observing S,(8,#) converges in probability to
siB,)=E[S,(B,D], Usp) is approximated by sum of iid martingales under H; and the

asymptotic normality is established by the martingale central limit theorem.
Moreover, following Lin et al. (1999), we can show that the asymptotic normality also holds

if we have a random weight function @Q(#) which converges in probability to the deterministic
weight function ¢(# uniformly in # But, the assumption of common baseline hazard seems
to be inevitable. That is, under the model (2.2) with a common g, the asymptotic normality
of Ug(B) is established simply by plugging the weight function @(#) into the score statistic.

In this case, the score statistic in (3.1) becomes

_ Si1(B8,0S,(B,8 . dN(8) dN, (1)
U= A5 05,5+ 5,0.0 1 S.06.5 6.5 =

The logrank statistic uses @(H=1. Lin et al. (1999) suggested each two weights with and

without covariate adjustment for the Gehan - Wilcoxon and the Prentice -~ Wilcoxon statistic.
For the Gehan - Wilcoxon statistic, Q(£ =n—12;Yk,~(t) or QN=S5,(B 1)+ S,(B, 0,

where B can be replaced with its common estimator if necessary. For the Prentice -

Wilcoxon statistic, one choice of (9 1is the left continuous version of the usual

Kaplan-Meier estimator S (&) for the marginal survival function of 7T based on {X,8} in
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(8

the pooled sample. The other is the baseline survival function estimator e ), where

R B ¢ de,(u)
0= 2R [ 5Bt Bl

which is the Breslow estimator of Agy(9.
From the above arguments, when Z and W are independent, =x —1z UL B s

asymptotically normally distributed under H; with mean zero and variance 0., which can be

estimated consistently with

G.=n"" 2L ULB)Y, (34)
where Uj(8) denotes the ith component score of UB(B)=Z(J’5(B) in (3.1) or (3.3), and

ﬁg( Bcan be obtained by replacing Ay(# with the Breslow estimator Ay(®) in the

martingales M,{#). Similarly, /U\;( B) can also be obtained.
When Z and W are dependent, applying the similar arguments to Upg(f), we obtain the

asymptotic results that = -z Uy z’) is asymptotically normally distributed under H; with

mean zero and variance 02, which can be estimated consistently with

A2 ~ A -1 ~

0= 0u— 0w Oww Ous (35)

where
Ga=n"" 2L UL BNTLBY, Gu=n""2L UL BDATLBY"
Here we denote

US®) =220 [ [ Wi () — W O1aNw () = UKD,
W)= 22 Wl ) YD) expl8 Wil 1A 233V H exnl B Wi D1}

Until now, we proposed two test statistics, # _l/ng( A/ 6, when Z and W are

independent and n Y ZUg( B/ when Z and W are dependent, and we showed that they

have the standard normal distribution as their asymptotic distributions. The proposed statistics
can also be used in independent sample case as alternatives to those in Tsiatis et al. (1985)
and Gu and Ying (1995).

In fact, properties of these tests are found in two sum of square type variance estimators in
(3.4) and (3.5). Their simple forms provide a relatively simple but unified variance estimators
to paired data and reduce amount of calculations in computing variance formulas. For paired
data, a few applications of this method are found in Lam and Longnecker (1983) for
constructing Wilcoxon test in the absence of censoring, in O'Brien and Fleming (1987), Jung
(1999) and Jeong (1999) for the logrank tests, and in Hsu and Prentice (1996) for the
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independence test.

4. Simulation Studies

In section 3, we proposed testing procedures based on the partial likelihood under the model
(2.1) and (2.2), and investigated their large sample properties. To assess their moderate sample
size properties, we carried out simulation studies. The simulation schemes and results here are
based on the model (2.2).

The empirical rejection probabilities under the null and the empirical powers under
alternative §=10.5 are computed for the five weight functions described in section 3, the
logrank (LR), Gehan-Wilcoxon without and with covariates (GW1, GW2), and
Prentice-Wilcoxon without and with covariates (PW1, PW2). For comparison, we considered 4
tests. Test 1 and 2 are for adjusted and unadjusted ones considering dependence between
members of a pair, whereas test 3 and 4 denote adjusted and unadjusted ones ignoring
dependence, respectively. Test 3 among 4 tests is the same as Gu and Yang’s (1995).

We consider a single covariate W and assume Z and W are both B(1,0.5) variables with

the correlation, 7, of 0 and 0.5, and the common regression parameters f is taken as 0 and
0.5. To generate a pair of random numbers of Z and W first generate two uniform random

numbers #; and %, from U(0, 1), and then,

Table 1. Empirical type 1 errors of simulation results ( 6=0)

o=0 0=0.5
. test test
v | B | weight 1 2 3 4 1 2 3 4

LR 0069 0065 0072 0.069 0057 0062 0018 0017
GW1 0060 0068 0062 0.058 0046 0045 0016 0016
0] GW2 0060 008 0062 008 0046 004 0016 0016
PW1 0058 0067 0058 0058 0050 0049 0015 0015
PW2 0060 0059 0061 0059 0061 0051 0015 0015

0 LR 0057 0052 0061 0057 0053 0050 0016 0016
GW1 0056 0006 0033 0052 0051 0050 0013 0012

051 GW2 0056 0055 004 0053 0048 0047 0013 0012
PW1 0055 0052 0057 0036 0063 0050 0015 0014

PW2 0061 0060 0060  0.099 0057 0054 0016 0014

LR 0059 0029 0062 0032 0059 0042 0016 0012

GW1 0067 00% 0057 0037 0050 0033 0013 0009

0| GW2 0067 00% 0057 0037 0049 0033 0013 0009
PW1 0068 0032 0057 0034 0050 0031 0013  0.009

05 PW2 0056 0033 0062 0034 0046 0031 0014 0010

LR 008 0026 0061 0025 0067 0039 0017 0014
GW1 0060 0030 0063 0031 0055 0045 0024 0016
05 GW2 009 0031 0064 0028 0058 0044 002 0017
PW1 0059 0029 0061 0028 0060 0043 0018 0015
PW2 0057 0024 0062 0025 0065 0046 0021 0013
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Table 2. Empirical powers of simulation results ( §=0.5)

0=0 p=0.5
. test test
v | B | weight 1 2 3 4 1 2 3 4

LR 0803 0800 0815 081l 0935 093 087 086
GW1 0719 0716 0724  0.718 082 082 0763 0757
0| GW2 0719 0716 0724 0717 082 081 0763 0758
PW1 0750 0746 0760 074 0833 0832 0813 0812
Pw2 0751 0746 0763  0.760 08% 084 0810 0807

LR 085 0818 0818 0813 0946 0945 0833 0380
GW1 0713 0709 0721 0716 0864 086 0768 0.765
05| GW2 0703 0700 0713  0.709 082 0848 0758 0744
PW1 074 0752 0760  0.760 0901 089 0811  0.807
PW2 0772 0766 0777 0.770 0916 0915 0834 0830

LR 0689 058 0689 059 0819 0777 0667 0616
GwW1 0562 0484 0572 0489 0704 0665 0365 0517
0} GW2 0556 0482 0571 0490 0702 0663 0363 0516
PW1 0606 0519 0619 0527 0756 0708 0599 0562
PW2 0612 0530 0620 0528 0771 0721 0605 0568

LR 0678 0612 0681 0625 0826 0780 0686 0646
GW1 0575 0511 0588 0522 0707 0675 0559 0533
05| GW2 0557 0502 0568 0509 0687 0652 0543 0517
PW1 0616 0545 0628 0.561 0757 0713 0610 0573
PW2 0641 0565 0648 0.580 0775 0737 0635 0598

if 1(,=2(1—p/2, set W=1, otherwise, set W =0
if w,=(14+7)/2, set Wy=1, otherwise, set W;=0.

05

Given Z and W the pairs of survival times, (7}, T,), were generated from bivariate
exponential distributions by Moran (1967) with marginal failure rates
Au=AZy, W) =exp(0Z,;,+ BW,), k=1,2;i=1,--,n and the correlation coefficient

0=0,0.5.

For the censoring times, we considered Cy~ U(0,3/A;) for k=1,2;7=1,-,n which
gives about 30% censoring in each group. For each combinations of simulation parameters,
1000 samples of size = 100 were generated.

Empirical type 1 errors are shown in Table 1. The logrank weight is slightly
anti-conservative in many cases, specifically under dependence. It seems, as noted in
Jeong(1999) because both the logrank weight and the sum of squared type variance estimator
put more weight on late time than Prentice - Wilcoxon and Gehan - Wilcoxon weights.
Empirical type 1 errors of adjusted tests, test 1 and 3, are close to the nominal level.
Unadjusted tests, test 2 and 4, are also good for y=10, but are conservative for y=0.5. This
occurs, of course, since the unadjusted tests ignore the covariates when there exists
dependence between treatment and covariates. Under dependence ( p=0.5), tests 3 and 4 are
also showing conservativeness because of ignoring dependence. Any special difference is not

found according to the value of £
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Empirical powers are reported in Table 2. For independence and no covariate, all 4 tests
have good powers. As expected, under dependence, test 1 and 2 are more powerful than the
others and comparable each other. With covariates, adjusted tests, test 1 and 3 have larger
power and comparable each other. In empirical power, the logrank weight dominate the others
and Prentice - Wilcoxon weight is next for all cases studied in this simulation. From this, we
guess that the logrank weight is optimal for the exponential distributions.

5. Remarks

In the model (2.1) and (2.2), we were primarily interested in the treatment effect parameter
0. We proposed a score statistic and established its asymptotic normality under the model
(2.2) with a common f. The same results will be obtained from the martingale framework

when we use separate parameters S, and f». If we want inferences on the regression

parameters B; and By, we have mentioned that Wei et al.’s (1989) marginal model is proper.

In this case, the model (2.2) could be used as an alternative to Wei’s model. Furthermore the
model (2.2) can be applied to detecting the interaction effect between treatment and covariates

in the sense that the hypothesis of no interaction effect will be expressed by Hy 8= 8s.

Study on this topic will be useful in a clinical trial where the side effects of a treatment are
concerned.

In the independent sample problem, power of the adjusted logrank tests were evaluated
analytically in the aforementioned studies such as Tsiatis et al. (1985), Gu and Ying (1995),
Kong and Slud (1997) and Lin et al. (1999). For paired data, however, a bivariate hazard
function is involved in evaluating power, and as pointed out in Jung (1999), it makes the
power evaluation difficult up to now.
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