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ABSTRACT

In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam
structures have become a very important issue to consider. In this paper, a general approach, which can predict the
dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various
supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is
assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined
differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method.
The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and

predictor-corrector algorithm, which is an implicit multi-step integration method.

Key words : Elastic beam structure, Constrained mechanical system, Multibody dynamics, Finite element method,
Bernoulli-Euler beam, Combined differential algebraic equation

Bernoulli-Euler or Timoshenko beam.” !
1. Introduction With the advent of fast computers, the finite element
method has become a more popular tool for engineering
It is a well-known fact that a given magnitude of analysis. Many researchers have applied the finite
dynamic force gives more impact to a structure than does element analysis technique for beams.'***! Some have
the same magnitude of static force. This kind of problem considered the geometric nonlinear effect of the
was first recognized during the 19th century Industrial Bemoulli-Euler beam.'>'¥ But most previous studies
Revolution, in the construction of bridges. Since then, have neglected the inertia effect of the moving mass
related problems have been investigated by many civil because their objective was limited to the beam structure.
engineers. Recently, mechanical engineers have become The moving system has become faster and lighter
interested in the dynamic behavior of the heam because nowadays, so some researchers have focused on the
the vehicles and trains moving on the structure have dynamic behavior of the moving system. To analyze the
become faster and lighter. Fast-moving precision vertical direction dynamic behavior of the moving
machines, rocket-launching systems, overhead cranes system, linear springs have been attached to the moving
and fast-moving escalators are other examples involving system.[*'®) But only the overall movement could be
high speed movement on the structure. Timoshenko!!! estimated in this case and no information was available
has lead the way by presenting an exact solution for mass for the components in the moving system. Meanwhile,
moving with constant speed on a simply supported beam. some researchers have made an attempt to use the
He used a mode synthesis method for the elastic beam. multibody dynamic analysis program.!'’'*] Maessen!'”!
Many others have investigated methods to determine obtained contact force between the wheel and rail using
exact solutions with mathematical models of the the force-strain relationship from a finite element static
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analysis of the rail. This method was applied to a vehicle
moving at low speeds, in which case the dynamic inertia
effect can be neglected. These studies have been mostly
limited to the vertical direction motion and simple
supporting conditions of the rail.

This paper suggests a systernatic way of analyzing a
vehicle moving on the flexible beam at a high speed. The
vehicle is treated as a constrained multi-rigid body system.
The vertical and longitudinal motion of the system can be
studied with the proposed method. Also,
supporting conditions of the beam and nonlinearities in the
system can be easily applied with the proposed method.

various

2. Equations of Motion for the Supporting Beam

Ignoring shear strain and rotary inertia, if a cross-
section of a beam is small compared to its length, then the
beam can be assumed to be a Bernoulli-Euler beam. A
linear non-uniform Bernoulli-Euler beam with an arbitrary
cross-section along its axis is shown in Fig. 1. Equilibrium
conditions of horizontal and vertical directions can be
written as Eq. (1).

ox
_a_z_(ﬂ(x)azv(x,,)j -0 4y
a2 &2

E is a modulus of elasticity, A(x) is a cross-section
area, I(x) is the moment of inertia of the cross-section,
and u(x,t) and v(x,t) represent displacements in horizontal
and vertical directions, respectively. Displacements of the
non-uniform elastic beam can be approximated using an
assumed mode method as in Eq. (2).

u(x,t)=§¢i(x)“i(t) ,

1) = Z v, (s ) )

where ¢i(x) and wj(x) are sets of approximation
functions of axial and transverse deformations, Uyt) and
Vj(t) are unknown time functions of nodal values, and N,
N, denote the number of terms necessary in the
approximations. If three coordinates are defined at each
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node as in Fig, 1, then N =2 and N,=4.

y,v(x,t)

%_{) \ /EV4(t)

- o - S .

Fig. 1 Finite element of linear non-uniform Bernoulli-
Euler beam

Also, shape functions should satisfy the following
boundary conditions.

#0)=1.4(L)=0.¢,0)=0.4,(,)=1
¥1(0)=1Lyi(0)=y(L,)= Wl( L)=0
w3(0)=Ly2(0)=y2(L.)=ypA{L.)=0
w3lLe)=1y3(0)=p3(0)=p3(L,)=0
vi(Le)=Ly4(0)=y300)=palL.)=0

©)

Shape functions which satisfy Eq. (1) with boundary
conditions of Eq. (3) can be determined as Eq. (4) and (5).

hlx)= 1——;
#l)-1- “
vy (x)=1- 3[&)2 + z(—’fe-f
yalx)= x—ZL{Lie)Z +Le[-[i)3
o-fe) Az
&)

The strain energy and the kinetic energy of the non-
uniform and linear Bernoulli-Euler beam are defined by
the following equations.
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Mass and stiffness coefficients for horizontal and

vertical nodal coordinates can be obtained by substituting
Eqgs. (2), (4) and (5) into Egs, (6) and (7).

n=f) e
n; =
7 Jdo

LE
Zm,j:'[o pA( )l//,l//jdx' ki _-[0

A(x)g,,dx, 'k _J'O’EA(x)¢;¢}dx Gj=1-N) (&)

®

1(x )y/,"l//"dx G j=1,N3)

where superscripts 1 and 2 denote x and y directions,
respectively. If external forces exist, then horizontal and
vertical forces can be transformed into the nodal
coordinate system using the virtual work theory, as in Eq.

(10).

L (e )oulx, t)dx+J‘ Gt ),

+Z (10)

o[
1
3

where

B0)= [ s 22, 0= [ oy iy

The equations of motion for an element in matrix form
can be obtained by substituting Egs. (8), (9) and (10) into
the Euler-Lagrange equation.

(M1 {7}, + (&L vk ={P), (11)

where

0 my mp 0 Pmyy Pmy
M), = my;  “my | 0 Zmy Zmy

s 0 0 'my, 0 0

0 Zmy Zmy 0 Zmy Zmy,

0 ‘my Zmy 0 Pmy Zmy, R

0 0 Y%y 0 0

0 My ki 0 Phyy kg
K], = 10 2y 10 Tkyy Yy |

ky 0 0 kpy 0 0

0 sy Yk 0 Pk gy

0 kg kg 0 Chay Zha,
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The equations of motion for the system can be
obtained by assembling the element equations.

[+ [k v={P} (12)

Contact force due to impact between the moving
system and the beam can be written as the nodal force
vector of Eq. (13)

{Py=p. (T (}+ p, (s} (13)

where {T(x)} and {S(x)} are vector functions for
nodal degrees of the freedom of the element i where
impact forces P,(t) and P(t) are applied.
0 (14
(15)

{r). 0.0,

{sx)}7,0,0,-

) =10,0,0,-,
() =[0,0,0,-,

,0]

where

{7 =14(x).0.0,6,(x), 0,0},
{s()f

=[0.v1(x) w2 (x) 0. w3 () wa (¥

Boundary conditions are applied to the node
depending on the supporting condition between the beam
and the foundation.

These boundary conditions must be considered when
assembling finite elements. If displacement of a node is
constrained, then the system equation of motion, Eq. (12),
can be partitioned into constrained degrees of freedom and

active degrees of freedom as in Eq. (16).
Maa MBC Va + Kaa KBC va — Pﬂ
Mca MCC VC Kca KCC VC - PC

Since constrained displacements and accelerations are
zeroes, Eq. (16) can be rewritten as Eq. (17) and Eq. (18).

(16)

amn
(18)

[Maa }{va }+ [Kaa ]{Va}: {Pa}

{Pc } = [Mca ]{Va }+ [Kca ]{Va }
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Reaction forces on the constrained nodes can be
obtained from the equations of motion of active degrees of
freedom. If forces are applied as boundary conditions, the
forces can be transformed to nodal forces and applied to
the right side of the equations of motion.

In many cases, the influence of damping upon the
response of a system is important. But the damping matrix
is difficult to define because the structural damping effect
is caused by complicated material properties. For
simplicity, the damping matrix can be expressed as a linear
combination of the mass and stiffness matrices known as
the proportional damping.

19)

[Caa]: a[Maa ]+ b[Kaa]

Two constants a, b can be defined as ['!)

a= 2@@241“’2 ¢sz1,
3 -

(20)
be 2(26022 19y
‘02—‘01

where w; o, are two distinct natural frequencies and &),
&, are corresponding modal damping ratios. The equations
of motion with structural damping can be written as
follows

Mo 0 )+ [Caa W+ [K o v } = 1P @1

3. Various Supporting Conditions

The foundation which supports an elastic structure can
be modeled in many ways. In this study, an elastic
structure is considered to be as a uniform beam, but a non-
uniform beam could be considered also.

3.1 Kinematic conditions for a foundation

Simply supported, damped or cantilever types are used
for the kinematic boundary conditions for an elastic
structure. These boundary conditions are used to obtain
system equations of motion as in Eq. (17). Also, system
equations of motion of a more complicated structure, as in
multi-span beams, can be obtained using kinematic
boundary conditions.
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Fig. 2 Beam supported by vertical and discrete foundation
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Fig. 3 Beam supported by vertical and continuous
foundation

3.2 Vertical and discrete foundation

The vertical and discrete foundation is shown in Fig. 2.
The beam is supported by springs and dampers at distance
Xpi from the left end. The supporting force f at p; can be
calculated using the displacement and velocity at that point.

NS 22)

Soi =k v(xp,,)+c v( p,,t), i=12,

where k; and c,; denote spring and damping constants
at the point p, and NS is the number of supporting
foundations. The supporting forces can be transformed to
the nodal coordinate system of a beam as follows.

{Fn}, = feﬁfpi D5(X‘Xpi){y(xpi)}ed"
= I_VZSfpi {g(xpi)}e

(23)

where P8(x) denotes the Dirac delta function. If
vertical and discrete foundations are continued over the
entire beam, then external forces due to this support can be
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obtained by assembling the finite elements. So vertical and
discrete foundations can be considered by adding force
terms to the right side of the system equations of motion.

(Mo Ja 1+ [Coa lVa}+ [Kaa v} = B }+ {Fi) (24)

3.3 Vertical and Continuous foundation.

The vertical and continuous foundation is shown in
Fig. 3. The vertical displacement and velocity at the
distance x from the left end can be found using the nodal
degrees of freedom and the shape function as follows.

)= {sGl e

Het)= sl . (25)

The strain energy due to stiffness in the vertical and
continuous foundation is

L
Ug = %J‘O kaf(x)vdx

= l{V}er [KVCL{V}

(26)

where kq{x) represents the vertical spring constant. The
stiffness matrix caused by the vertical and continuous
support can be calculated as Eq. (27).

x) kf x){S } (27)

[Kycl. = _“

This term should be added to the equations of motion
of the beam.

The dissipation energy due to the vertical damping
effect can be calculated as Eq. (28).

L
Ue = %J.O \}ch(x)\"dx

SbElol vl

(28)

where c(x) is the vertical damping coefficient. So the
damping matrix which will be added to the beam can be
calculated as Eq. (29).

(29)

[Crck = [ el s a
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The effect of the vertical and continuous support can
be ascertained by adding damping and stiffness matrices to
the system equations of motion as in Eq. (30).
[Maa ]{va }+ ([Caa ]+ [CVC D{\./a }+ ([Kaa ]+ [KVC D{Va } = {Pn } (30)

3.4 Longitudinal and discrete foundation

Fig. 4 Beam supported by longitudinal and discrete
foundation

The longitudinal and discrete foundation is shown in
Fig. 4. The axial force of the support whose distance is x,;
from the left end can be determined using the axial
displacement and velocity of the supporting point in the
beam.

8pi = kp,-u(xp,-,t)+ cp,-d(xp,-,t) i=1,2,--,NA (3 l)
where NA represents the number of supporting points
in the beam. The axial force can be transformed to the

nodal coordinate system of the beam as in Eq. (32).

x )}dx

L, NA

FLD J. ng, X —Xp,
=;gp.~{r(xp )

(32

The external force vector due to the longitudinal and
discrete foundations can be obtained by assembling the
finite elements of the system. Thus the effect of the
longitudinal and discrete foundation can be considered by
adding the force vector to the right side of the system
equations of motion.

(M 0 [0 }+ [Caa Mo 1+ [Ka Hva }= {1+ (i} (33)
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3.5 Longitudinal and continuous foundation
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Fig. 5 Beam supported by longitudinal and continuous
foundation

The Longitudinal and continuous foundation is shown
in Fig. 5. The displacement and velocity at the distance x
from the left end can be found using the nodal degrees of
freedom and the corresponding shape vector.

ulr )= {Tx)fg {vl,

i) T, (34)
The potential energy of the longitudinal and
continuous foundation is
e
Ug= 5 _I;L u ka(x)tdx (35)

AR

where k,(x) denotes the longitudinal spring constant.
The stiffness matrix due to the longitudinal and continuous
foundation can be calculated as in Eq. (36).

Iricl = [ et (A o (36)

The dissipation energy due to the axial direction
damping effect is

Ue =% fcurca(x)ldx

= %{V}Z [crc L.
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where c,(x) represents the axial direction damping
coefficient. The damping matrix acting on the beam can be

written as
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[Cucl. = [ 0henrte an (38)

The effect of the
foundation can be achieved by adding the damping and

longitudinal and continuous

stiffness matrices to the system equations of motion.

[Maa]{va}+([cna]+[CLC]){va }*([Kaa]"’ [KLC]){VG}= {Pu} (39)
3.6 Rotational and discrete foundation
V. Vy
% - -, w
% © @
7
7 K Kis15Ciay

Fig. 6 Beam supported by rotational and discrete
foundation

The nodal force vector due to rotational springs and
dampers which are connected at both ends of the beam as
shown in Fig. 6 can be written as Eq. (40).

{Fug), = [Knz ]e e +[Car L V) (40)

[Knrle=diag[0,0.k;,0,0.kin1]e and  [Cngple=
diag[0,0,c;,0,0,c;+1]e. If the same rotational and discrete
foundation is applied to the entire system, the nodal force
vector can be obtained by assembling the element
equations. Thus, the effect of the rotational and discrete

where

foundation can be obtained by adding the corresponding
force vector to the right side of the system equations of
motion.

Moo Jiat+ [Caa Vo) [KaaHvat= {2} + {F v} @n

4. Equations of motion of the moving system

The mechanical system moving on the elastic structure
is composed of many parts. The motion of these parts is
constrained by the geometrical constraints or dynamic
force relationship. Every component of the moving system
is considered to be a rigid body.

The equations of motion of the moving system are
differential algebraic equations as in Eq. (42) and
constraint equations can be written as Eq. (43).
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o

{olg.1)}=1o} (43)

where [N] is the mass matrix of the rigid body system,
{q} is the generalized coordinate vector, {A} is the
Lagrange multiplier vector, {g} is the generalized force
vector and [®] is the independent kinematic constraint
equations for the system. [®g] is the Jacobian matrix and
{y} is the right hand side of the second derivative of
equation (43) as in Eq. (44).

)= 100, 1D, Ho}-2A0 g}~ (o) “h

The generalized force vector includes external forces
applied to the rigid body system and forces due to a system
like the linear spring-damper-actuator or the rotational
spring actuator. Also, nonlinear Hertzian contact force can
be used to consider low speed impact between the rigid
body and the supporting structure. The forces generated by
the impact of two bodies which have arbitary curves is
shown in Figures 7 and 8.

The normal force due to contact between two bodies is !

b o wcapfir ) “)

where |{d;j}| is the magnitude of the vector {d;} and k
and ¢ are the Hertzian contact stiffness and damping
coefficients, respectively, and o is the normal direction
penetration distance of the two contact points P;, Pj. The
distance can be calculated as

a=(Ri+Rj)‘{da‘}r{du} (46)

where {d;}={r;}+{s;}-{r;}-{s°}and R;, R; are the radii
of the curvatures of the instantaneous point of contact.
Two bodies are in the impact state when o > 0. Two bodies
are apart when o < 0. If the curvature of one body is a
straight line, the radius of curvature becomes infinite. In
this case, the penetration distance can be calculated as

a=R;~{4; )y} 47

The Hertzian contact stiffness is defined using the

geometric and physical properties of the contact body as 22

0.5

4 R;R;

k= ) (48)
3n‘h,- +hj i{RﬁRJ}

where

1

hl:;"_'_, I=i,j
7E|

E1 : Young’s Modulus, v; : Poisson’s ratio.

The tangential force is the result of the friction
between two impacting or contacting bodies. The
magnitude of the tangential force is a function of the
vertical force and the friction coefficient.

¥ = o tanh(ﬁii] {re [A(gﬂﬁ% -} 49)

where Ly is the friction coefficient, § is the tangential

velocity, §.is the transition speed and A is the rotational
transformation matrix. Using this impact or contact force
between two bodies, the generalized force vector can be
calculated.

Ty 5
el A =g} OO

- (Y,P ~¥i )f(i)l + (xip i )f(;)'

. O {t} o
G ; i §i ‘R
© ,»,iﬁimﬁi§j§3~g @ 0

I N

A 5

L x

Fig. 7 Arc-arc contact



T. W. Park, C. J. Park : International Journal of the KSPE Vol. 3, No. 4.

Fig. 8 Arc-line contact

These forces can be added to the force vector in the
system equations of motion to represent the Hertzian
impact or contact.

5. Combined System Equations of Motion

If a constrained multibody system is moving on the
flexible beam which has various types of foundation, the
equations of motion of the flexible beam and the
multibody system can be written as,

[Maa]{Va}+[C]‘{Va}+[1<]'{va}={P(q,é,va,va,t)}‘ G
N o |[4) [elg.dVa.Vant) 52
o, S “
Where

[C]*=[Caa]+[CVC]+[CLC]
[K]*=[Kaa]+[KVC]+[KLC]
{P}*={Pa}+{FVD}+{FLD}+{FNR}

The generalized force vector {g} and the nodal force
vector {P}* are both functions of generalized coordinates
and nodal coordinates. Thus Egs. (51) and (52) can be
combined as one system equation.

M, 0 0]V, [o
0 N oligi=1g (53)
0o @, 0ila] |r

{o}=1{P}" -[cT Vo) -[&T o}

The generalized coordinates of Eq. (53) must satisfy
the constraint equations of Eq. (43).

To solve combined differential algebraic equations, the
generalized coordinate partitioning method ! which is
regarded as the most stable solution method for DAE, can
be used. The generalized coordinates are partitioned into
independent and dependent coordinates. The independent
generalized coordinates and nodal coordinates are
integrated using the multistep integration method and the
dependent generalized coordinates can be obtained by
solving the constraint equation of Eq. (43).

6. Conclusions

A method analyzing a mechanical system which
moves on the non-uniform linear Bernoulli-Euler beam is
presented in this paper. Hamilton’s principle is applied to
derive vertical and horizontal equations of motion for the
beam. Various supporting conditions are considered for the
foundation of the beam. The effect of the various
supporting conditions are considered in the equations of
motion for the beam.

The equations of motion for the beam and the system
differential algebraic equations of the moving mechanical
system are combined. The combined system equations of
motion will enable us to analyze the mechanical system
which moves on the elastic beam. The vertical and
horizontal motion can be analyzed with this system. Also,
reaction forces between the moving system and the elastic
beam can be calculated. And finally, reaction forces
between interconnected parts in the moving system can be
obtained, which could be used to estimate the life cycle of
the parts.
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