International Journal of the Korean Society of Precision Engineering Vol. 3, No. 4, October 2002.

Dynamic Analysis of a Moving Vehicle on Flexible beam

Structure (II) : Application

Tae-Won Park’, Chan Jong Park?

' School of mechanical and Industrial engineering, Ajou University, Suwon, Korea

? Escalator Team, LG OTIS, Changwon, Korea

ABSTRACT

Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures

have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is
possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of
foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody
dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning
algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving
load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle

model on a simply supported 3-span bridge.
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1. Combined system equation of motion

Ignoring shear strain and rotary inertia, if a cross-
section of a beam is small compared to its length, then
the beam can be assumed to be a Bernoulli-Euler beam.

A linear and non-uniform Bernoulli-Euler beam with
an arbitrary cross-section is shown in Fig. 1. Horizontal
and vertical motions are assumed to be independent of
each other.

If a constrained multibody system is moving with
initial velocities on a flexible beam, the equations of
motion for the constrained multibody system and the
elastic beam can be obtained as explained next.
Continuous vertical and horizontal elastic foundations
can be modeled by adding terms based on elastic
foundations to the stiffness and damping matrices in the
equations of motion for the beam. Discrete horizontal,
vertical and rotational foundations can be modeled by
adding the proper terms to the force vector in the
equations of motion for the beam. Also, nonlinear elastic

Hertzian contact between the moving system and the

elastic structure can be considered by adding the proper

force in the force vector. [
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[M,.] and {v,} represent the mass matrix and nodal
coordinate vector, respectively. Constraint relationships
are considered in the equation. [N] is the diagonal mass
matrix of the moving system and [®y] is the Jacobian
matrix of the constraint equations, [A] is the Lagrange
multiplier vector and {y} is the right hand side of the
acceleration equation of the constraint equations. [Kyc]
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and [Cyc] are stiffness and damping matrices due to
continuous and longitudinal elastic foundations, {Fyp}
and {F p} are force terms due to discrete, vertical and
longitudinal elastic foundations and {Fxg} is the force
term due to discrete and rotational elastic foundations.

The generalized force vector {g} in the DAE
(Differential Algebraic Equation) of the constrained
multibody system and the nodal force vector {P}" of the
ordinary differential equation of the elastic beam are
determined based in part depending on the space and
time variables for the two systems. Thus, equations of
motion for the two systems can be combined into one
system matrix equation as in Eq. (4).
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where, {0} = {P}'“[CH\",,}”[KNVJ- The two systems
have to be solved simultaneously using Eq. (4).
which obtained by
integrating Eq. (4) must satisfy the nonlinear constraint

Generalized coordinates are

relationship of Eq. (3).
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Fig. 1 Constrained multibody system moving on a
flexible beam structure

the
differential equation solution method can be used to
solve the DAE of Eq. (4). All generalized coordinates
can be solved simultaneously using the backward

Several methods which utilize ordinary

difference formula and the nonlinear equation solution
method. This method is suitable for the stiff system but the
simulation time is longer than with the other methods. %!

6

The generalized coordinate partitioning method
partitions the generalized coordinates into independent
and dependant coordinates. Independent coordinates are
obtained from the differential equations and dependant
coordinates are solved using the constraint equations. B3]

The constraint violation stabilization method uses
feedback control theory by adding constraint violation
items to the right side of the differential equations. The
exact solution can be obtained theoretically by choosing
the proper gain values from the constraint violation terms.
"l Defining the correct values of the gains for this
method is very important. But defining the optimal
values of the gains is not an easy task because the values
change depending on the type and status of the system.
This method does not solve the position and velocity
equations, thus, if the system is near the kinematically
singular configuration or impulsive force is applied to the
system, then the solution may not be reliable.

In this study, the generalized coordinate partitioning
method is used to solve the combined system equations.
The independent coordinates are obtained using the
implicit multi-step predictor corrector integration method.
To solve Eq. (4), the solution method with the following
6 steps are suggested. Figure 2 shows the flow diagram
of the algorithm.

Step 1) Define the initial conditions for the moving
system and the elastic beam.

Step 2) Partition the generalized coordinates of the
moving system into independent and dependent
coordinates. To partition the coordinates, the LU
decomposition method is applied to the Jacobian matrix
of the constraint. QR decomposition, singular value
decomposition or the Gram-Schmidt method can be used.

Step 3) Solve Eq. (4) using the initial conditions
from Step 1.

Step 4) Numerically integrate the independent
coordinates using the predictor corrector algorithm.
During the corrector process, partition the generalized
coordinate again if the convergence rate is slow.

Step 5) Solve the nonlinear constraint equation, Eq.
(3), to obtain the position values of the dependent
coordinates. The Newton-Raphson method is used to
solve the nonlinear equations. If the convergence rate is
low then partition the generalized coordinates again. The
velocity equation, which is the time derivative of Eq. (3),
is used to obtain the velocities of the dependent



7. W. Park, C. J. Park : International Journal of the KSPE Vol. 3, No. 4.

coordinates.

Step 6) Repeat steps 3,4,5 until the time reaches tgnp,
The positions and velocities obtained in Steps 4 and 5 are
used as the initial conditions in Step 3.

2. Concentrated load moving on a simply
supported beam

To verify the reliability of the proposed method, the
solution of the simple model is used. Timoshenko and
other investigators have used the mode synthesis method
to obtain the analytical solution of the vertical motion of
the constant load moving on a simply supported beam
with continuous contact.
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Fig. 3 Simply supported beam subjected to a moving
concentrated load

To compare the results from the elastic beam, the
DAF (Dynamic Amplification Factor) and IF (Impact
Factor) of the simply supported beam are defined as

follows:
DAF.= dynamic deflection at the beam center (5)
" max imum static deflection at the beam center
1 p.= max imum dynamic deflection at the beam center 6)

max imum static deflection at the beam center

Table 1 Material properties and other conditions of the

moving load model

Symbol Description Value
EI flexural rigidity (N.m?) | 4.03x10°
mass of elastic beam
Mg 50.47
(kg/m)
A cross section area (m?) 6.4x10°
L span length (m) 6.25x10"!
Vo moving speed (km/h) 37
Py moving load (kgf) 349
00
L -— Reference [6]
02
----- 4 glement (Proposed)
-0.4
L{"’ 06 F
o
08
10
00 072 0‘.4 OTG O,LB 10

Non-dimensional Time (tz)

Fig. 4 Dynamic Amplification Factor of the moving load
model
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Fig. 5 Velocity effect of the Impact Factor according to
element increment

The DAF of the proposed method with 4 beam
elements and the results from the reference [6] are
compared in Fig. 4. The results using the proposed
method are very close to those of the reference [6]. 1o is
the time required for the load moving from the left end to
the right end.
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Fig. 6 Load effect of the Impact Factor according to

element increment
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Fig. 7 Dynamic Amplification Factor according to
moving model
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The vertical movement of the elastic beam is affected
by the velocity and magnitude of the moving load. To
investigate the effect of the velocity, the IF of a 349kgf
moving load is compared with the results from the
reference ), at various velocities. Figure 5 shows the
comparison graphs. Except for the result with one beam
element, the results are very close to the those of the
reference %),

The IF of the elastic beam increases nonlinearly with
increasing velocity, but after a certain velocity, it
decreases, even with further increases in velocity. The
critical speed is the velocity where the IF curve changes
its slope. The critical speed can be defined using the
length of the span and the first bending frequency along
the span.

The accuracy of the proposed method will depend on
the number of the finite elements used to model the
elastic beam. The result will be more accurate with an
increased number of finite elements, but the simulation
time will be increased too. Thus, the number of finite
elements used should be optimized in accordance with
the required accuracy of the result. Figure 6 shows the IF
of the moving load with various magnitudes at a constant
speed of 37km/h. The IF is constant with various
magnitudes of the load as expected from the assumption
of the linear Bernoulli-Euler beam. Figures 5 and 6
indicate that the result is accurate if the number of finite
elements is more than four.

Another assumption in the previous simulation is that
the moving load maintains contact with the beam. But to
model a high speed vehicle or railway train moving on
the bridge accurately, the inertia effect for the moving
systemn needs to be considered in the model. To achieve
that, the contact between the moving system and the
beam is assumed to be discrete.

Figure 7 shows the DAF curves of the moving load
model and the moving mass model with the material
properties in Table 2. The results of the two models are
similar when the speed is low but the results are quite
different when the speed is increased. When the speed is
low, the curves of the two models follow the static
deflection of the beam, but at the increased speed, the
dynamic effect needs to be considered. The moving load
model cannot consider the dynamic effect of the moving
system. Thus when the speed of the moving system is
high, the proposed method has to be used.
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3. Vehicle model moving on a 3-span bridge

The multibody model of a vehicle moves along on a
3 span bridge as shown in Fig. 8. The design parameters
of the vehicle are changed to study the dynamic behavior
of the vehicle while it is accelerating or decelerating on
the bridge. Also, the supporting conditions of the bridge
are changed to see the dynamic behavior of the vehicle
and the bridge.

The vehicle is modeled with one sprung mass and
two unsprung masses. Springs and dampers are defined
for the wheels and suspensions of the vehicle. Two links
are defined between the sprung mass and two unsprung
masses to restrain the longitudinal motion of the vehicle.
Discrete Hertzian contact between the unsprung masses
and elastic beams makes the vehicle to vibrate on the
bridge. Four finite beam elements are used for each span,
and two end points A and D are constrained to have only
rotational degree of freedom. Only vertical
displacements are constrained for the supports B and C.
Properties for the elastic beam and material properties for
the Hertzian contact are shown in Table 1 and Table 2.

Other necessary data for the model is in Table 3.

Table 2 Contact properties of the moving mass model

Symbol Description Value

Young’s modulus of the
E . 206.0
moving mass (GPa)

Young’s modulus of the

205.6
beam (GPa)
Poisson ratio of the
v . 0.29
moving mass
Poisson ratio of the beam 0.30
v
m.J,
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Fig. 8 Vehicle moving on a 3-span bridge

Table 3 Vehicle data

Symbol Value
m, (kg) 500
I, (kg.m?) 70
m,;, m; (kg) 350
Iy, I (kg.m?) 10
ki, ko (N/m) 2.0x10°
¢y, €2 (N-s/m) 2.0x10°
L (m) 8
h, (m) 0.22
h, (m) 0.2
h; (m) 0.1
b, (m) 0.15
b, (m) 0.45

3.1 Moving with constant velocity

The dynamic behavior of the vehicle and the vertical
motion of the elastic beam are studied with the vehicle
moving at a constant speed of 50 km/h on the 3-span
bridge. Vertical deflections at the center of the moving
load model and moving vehicle model are compared in
Fig. 9. The vertical deflection of the vehicle model is
larger than that of the moving load model, as shown in
Fig. 9.

The wheelbase of the vehicle is lengthened to show
the dynamic behavior of the vehicle. The vertical
deflection of the longer wheelbase is smaller while the
vehicle is on the bridge, but after the vehicle passes over
the bridge, the residual strain becomes greater than with
the smaller wheelbase, as shown in Fig. 10. The sume
contact force is transmitted to the vehicle, so the pitch
and bounce motion behave similarly to the vertical
motion of the beam.

Next, continuous vertical foundations are used to
support the 3-span bridge. The vertical motion is
compared with that of the initial model. The stiffness and
damping coefficients per unit length are K.=10kN/m>
and C=5kN-s/m® respectively. The continuous elastic
support can be considered in the system equations of
motion by adding stiffness and damping matrices due to
the supporting conditions. The continuous support
reduces the vertical motion of the vehicle, as shown in
Fig. 11.

Finally, dynamic response for the discrete elastic
foundation is studied. This supporting condition can be
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considered in the system equations of motion by adding
force terms due to the discrete supporting conditions.
The vertical motion of the vehicle is also reduced by this
support condition, as shown in Fig. 12.

3.2 Moving with deceleration

The full-lock braking condition is applied to the front
unsprung mass. The initial velocity of the vehicle is 50
kmv/h. The friction coefficient between the wheel and the
bridge is assumed to be p=0.85. The motions of the
vehicle and bridge are studied. The vehicle comes to a
full stop after 3.4 seconds. Figures 13(a) and 13(b) show
the vertical and longitudinal deflection of the bridge.
Figure 13(c) and 13(d) compare the bounce and
longitudinal motion of the vehicle to the result with the
model which assumed the bridge to be a rigid body.

The longitudinal stiffness of the bridge is greater than
the vertical stiffness, so the braking of the vehicle will
excite the high frequency longitudinal motion of the
bridge. The same effect will be observed in the case of
acceleration. Thus, to study the dynamic behavior of the
vehicle accurately, the bridge needs to be modeled as an
elastic structure.

Even though the reliability of the presented method
is shown in chapter 2, the results of the moving vehicle
model need to be verified with the experimental results
in the future.

4. Conclusions

This paper presents combined system equation of
motion of a vehicle moving on an elastic structure.
Various supporting foundations are considered in the
equations of motion. The vehicle and the structure are
The
numerical procedure for the proposed equations is also

assumed to have discrete Hertzian contact.

presented. To validate the proposed method, the result of
the moving mass on a simply supported beam is
compared with the exact solution of the moving load
model.

Moving velocity, moving load, and the number of
finite elements are changed to study the results. Accurate
results can be obtained if more than four finite elements
are used for the elastic structure. The results with the
moving load model and the proposed method are similar
at a low speed, but the results are quite different for the

09

high speed case, due to the inertia effect of the moving
vehicle.

Finally, a multibody model of a vehicle moving on a
3-span bridge is studied to show the applicability of the
proposed method. The dynamic behavior of the bridge
and vehicle can be studied for many design parameters
and different vehicle operating conditions.
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Fig. 13 Results of the vehicle model under full-lock
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