Growth of epitaxial silicon by hot-wall chemical vapor deposition (CVD) technique and its thermochemical analysis

고온벽 화학기상증착법을 이용한 에피 실리콘 증착과 열화학적 해석

  • 윤덕선 (영남대학교 응용화학공학부) ;
  • 고욱현 (영남대학교 응용화학공학부) ;
  • 여석기 (영남대학교 응용화학공학부) ;
  • 이홍희 (서울대학교 응용화학부) ;
  • 박진호 (영남대학교 응용화학공학부)
  • Published : 2002.08.01

Abstract

Epitaxial Si layers were deposited on (100) Si substrates by hot-wall chemical vapor deposition (CVD) technique using the $SiH_2Cl_2/H_2$chemistry. Thermochemical calculations of the Si-H-Cl system were carried out to predict the window of actual Si deposition process and to investigate the effects of process variables (i.e., deposition temperature, reactor pressure, and input gas molar ratio ($H_2/SiH_2Cl_2$)) on the epitaxial growth. The calculated results were in good agreement with the experiment. Optimum process conditions were found to be the deposition temperature of 850~$950^{\circ}C$, the reactor pressure of 2~5 Torr, and the input gas molar ratio ($H_2/SiH_2Cl_2$) of 30~70, providing device-quality epitaxial layers.

$SiH_2Cl_2/H_2$ 기체혼합물을 원료로 사용하여 (100) Si 기판 위에 고온벽 화학기상증착법(hot-wall CVD)으로 에피 실리콘을 증착시켰다. 공정변수(증착온도, 반응기 압력, 입력 기체의 조성비($H_2/SiH_2Cl_2$)등)가 실리콘 증착에 미치는 영향을 조사하기 위해 열화학적 전산모사를 수행하였으며, 전산모사를 통해 얻은 공정조건의 범위를 바탕으로 실험한 결과, 전산모사의 결과와 실험이 잘 일치함을 알 수 있었다. 실험을 통해 얻은 최적 증착 조건은 증착온도가 850~$950^{\circ}C$, 반응기 압력은 2~5 Torr, $H_2/SiH_2Cl_2$비는 30~70 정도임을 알 수 있었고, 증착된 에피 실피콘은 두께 및 비저항의 균일도가 우수하고 불순물 함량이 낮은 양질의 박막임을 확인할 수 있었다.

Keywords

References

  1. Chemical Vapor Deposition: Principles and Applications M.L. hitchman;K.F. Jensen
  2. J. of Crystal Growth v.65 Near Equilibrium Growth of Silicon by Silicon by CVD: I. the Si-CI-H system J. Bloem;Y.S. Oei;H.H.C. De Moor;J.H.L. Hanssen;L.J. Giling https://doi.org/10.1016/0022-0248(83)90080-5
  3. J. Electrochem. Soc. v.133 Low Temperature silicon epitaxy by Hot wall Ultrahigh Vacuum/Low Pressure CVD Techniques: Surface Optimization B.S. Meyerson;E. Ganin;D.A. Smith;T.N. Nguyen https://doi.org/10.1149/1.2108824
  4. Tech. Dig. Intl. Elect. Dev. Mtng. Characterization of IC devices Fabricated in Low Temperature (550C) Epitaxy by UHV/CVD Technique T.N. Nguyen;D.L. Harame;J.M.C. Stork;F.K. Legoues;B.S. Melyerson
  5. IEEE Elect. Dev. Lett. v.10 Epitaxial-Base Transistors with UHV/CVD Epitaxy: Enhanced Profile Control for Greater Flexibility in Device Design D.L. Harame;J.M.C. Stork;B.S. Meyerson;T.N. Nguyen;G.J. Scilla https://doi.org/10.1109/55.31702
  6. J. Electrochem. Soc. v.131 Equilibrium Calculations for the Si-H-Cl system from 300 to 3000 K C.S. herrick;R.A. Sanchez-Martinez https://doi.org/10.1149/1.2115606
  7. J. Kor. Crystal Growth & Crystal Tech. v.12 themodynamic analysis of the deposition process of SiC/C functionally gradient materials by CVD technique J. Lee;H. Shin;Y. Kim;C. Park
  8. J. Phys. Chem. Ref. Data v.3 JANAF Themochemical Tables https://doi.org/10.1063/1.3253143
  9. National Standard Reference Data Series JANAF Thermochemical Tables
  10. Ph.D. Thesis, Metallurgie Insititute of National Polytechnique of Grenoble F. Defoort
  11. Thermochemical data of pure substances F. Sauert;E. S. Rhonhof;W. S. sheng
  12. J. Crystal Growth v.102 Doping of Gallium Arsenide in MOCVD: Equilibrium Calculations L.C. Keizer;X. Tang;R.Z.C. Van Meerten;L.J. Giling https://doi.org/10.1016/0022-0248(90)90427-M
  13. J. Chem. Soc., faraday Trans. 1 v.73 Mass Spectrometric Determination of the Heats of Formation of the Silicon Subchlorides SiCl(g),$SiCl_2(g)$and$SiCl_3(g)$ M. Farber;R.D. Srivastava https://doi.org/10.1039/f19777301672
  14. J. Chem. Thermodynamics v.11 Enthalpies of Formation of the Silane Chlorides M. Farber;R.D. Srivastava https://doi.org/10.1016/0021-9614(79)90041-7
  15. Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology and Applications W. Kern