DOI QR코드

DOI QR Code

Perfect Shuffle에 의한 Reed-Muller 전개식에 관한 다치 논리회로의 설계

Design of Multiple-Valued Logic Circuits on Reed-Muller Expansions Using Perfect Shuffle

  • 성현경 (상지대학교 컴퓨터·정보공학부)
  • 발행 : 2002.09.01

초록

본 논문에서는 Perfect Shuffle 기법과 Kronecker 곱에 의한 다치 신호처리회로의 입출력 상호연결에 대하여 논하였고, 다치 신호처리회로의 입출력 상호연결 방법을 이용하여 유한체 GF$(p^m)$상에서 다치 신호처리가 용이한 다치 Reed-Muller 전개식의 회로설계 방법을 제시하였다. 제시된 다치 신호처리회로의 입출력 상호연결 방법은 모듈구조를 기반으로 하여 행렬변환을 이용하면 회로의 가산게이트와 승산게이트를 줄이는데 매우 효과적임을 보인다. GF$(p^m)$상에서 다치 Reed-Muller 전개식에 대한 다치 신호처리회로의 설계는 GF(3)상의 기본 게이트들을 이용하여 다치 Reed-Muller 전개식의 변환행렬과 역변환행렬을 실행하는 기본 셀을 설계하였고, 다치 신호처리회로의 입출력 상호연결 방법을 이용하여 기본 셀들을 상호연결하여 실현하였다. 제안된 다치 신호처리회로는 회선경로 선택의 규칙성, 간단성, 배열의 모듈성과 병렬동작의 특징을 가지므로 VLSI 화에 적합하다

In this paper, the input-output interconnection method of the multiple-valued signal processing circuit using Perfect Shuffle technique and Kronecker product is discussed. Using this method, the circuit design method of the multiple-valued Reed-Muller Expansions (MRME) which can process the multiple-valued signal easily on finite fields GF$(p^m)$ is presented. The proposed input-output interconnection methods show that the matrix transform is an efficient and the structures are modular. The circuits of multiple-valued signal processing of MRME on GF$(p^m)$ design the basic cells to implement the transform and inverse transform matrix of MRME by using two basic gates on GF(3) and interconnect these cells by the input-output interconnection technique of the multiple-valued signal processing circuits. The proposed multiple-valued signal processing circuits that are simple and regular for wire routing and possess the properties of concurrency and modularity are suitable for VLSI.

키워드

참고문헌

  1. S. L. Hurst, 'Multiple-Valued Logic-Its Status and Future,' IEEE Trans. Comput., Vol.C-30, No.9, pp.619-634, Sept., 1981 https://doi.org/10.1109/TC.1981.1675860
  2. B. Benjauthrit and I. S. Reed, 'Galois Switching Functions and Their Application,' IEEE Trans.Comput., Vol.C-25, No.1, pp.78-86, Jan. 1976 https://doi.org/10.1109/TC.1976.5009207
  3. J. T. Butler and A. S. Wojcik, 'Guest Editors' Comments,' IEEE Trans.Comput., Vol.C-30, No.9, pp.617-618, Sept., 1981 https://doi.org/10.1109/TC.1981.1675859
  4. H. T. Kung, 'Why Systolic Architectures?,' IEEE Computer, Vol.15, pp.37-46, Jan., 1982 https://doi.org/10.1109/MC.1982.1653825
  5. H. M. Shao, T. K. Truoung, L. J. Deutsch, J. H. Yaeh and I. S. Reed, 'A VLSI Design of a Pipelining Reed-Solomon Decoder,' IEEE Trans.Comput., Vol.C-34, No.5, pp.393-403, May, 1985 https://doi.org/10.1109/TC.1985.1676579
  6. H. Y. Seong and H. S. Kim, 'A Construction of Cellular Array Multiplier over $GF(2^m)$,' KITE, Vol.26, No.4, pp.81-87, April, 1989
  7. I. S. Hsu, T. K. Truong, L. T. Deutsch and I. S. Reed, 'A Comparison of VLSI Architecture of Finite Field Multiplier Using Dual, Normal, or Standard Bases,' IEEE Trans. Comput., Vol.C-37, No.6, pp.735-739, June,1988 https://doi.org/10.1109/12.2212
  8. B. B. Zhou, 'A New Bit-Serial Systolic Multiplier over $GF(2^m)$,' IEEE Trans.Comput., Vol.C-37, No.6, pp.749-751, June, 1988 https://doi.org/10.1109/12.2216
  9. J. M. Pollard, 'The Fast Fourier Transform in a Finite Field,' Math. Comput., Vol.25, No.114, pp.365-374, April, 1971 https://doi.org/10.2307/2004932
  10. Y. Wang and X. Zhu, 'A Fast Algorithm for the Fourier Transform over Finite Field and Its VLSI Implementation,' IEEE J. Select. Area Commu., Vol.6, No.3, pp.573-577, April, 1988 https://doi.org/10.1109/49.1926
  11. F. Yang, 'Fast Synthesis of Q-valued Functions Based on Modulo Algebra Expansions,' Proc. of 16th International Symposium on Multiple-Valued Logic, Virginia, USA, pp.36-41, May, 1986
  12. E. N. Zaitseva, T. G. Kalganova, and E. G. Kochergov, 'Logical not Polynomial Forms to represent Multiple-Valued Functions,' Proc. of 26th International Symposium on Multiple-Valued Logic, Santiago de Compostela, Spain, pp.302-307, May, 1996 https://doi.org/10.1109/ISMVL.1996.508378
  13. R. S. Stankovic and C. Moraga, 'Reed-Muller-Fourier Versus Galois Field Representations of Four-Valued Logic Functions,' Proc. of 28th International Symposium on Multiple-Valued Logic, Fukuoka, Japan, pp.186-191, May, 1998 https://doi.org/10.1109/ISMVL.1998.679340
  14. R. S. Stankovic and J. Astola, 'Bit-Level and Word-Level Polynomial Expressions for Functions in Fibonacci Interconnection Topologies,' Proc. of 31st International Symposium on Multiple-Valued Logic, Warsaw, Poland, pp.305-310, May, 2001 https://doi.org/10.1109/ISMVL.2001.924588
  15. S. Rahardja and B. J. Falkowski, 'A New Algorithm to Compute Quarternary Reed-Muller Expansions,' Proc. of 30th International Symposium on Multiple-Valued Logic, Portland, Oregon, pp.153-158, May, 2000 https://doi.org/10.1109/ISMVL.2000.848614
  16. B. Harking and C. Moraga, 'Efficient Derivation of Reed-Muller Expansions in Multiple-Valued Logic Systems,' Proc. of 22nd International Symposium on Multiple-Valued Logic, pp.436-441, May, 1992 https://doi.org/10.1109/ISMVL.1992.186828
  17. M. Davio, 'Kronecker Products and Shuffle Algebra,' IEEE Trans. Comput., Vol.C-30, No.2, pp.116-125, Feb., 1981 https://doi.org/10.1109/TC.1981.6312174
  18. T. Y. Feng, 'A Survey of Interconnection Networks,' IEEE Computer, Vol.14, No.10, pp.12-27, Dec., 1981 https://doi.org/10.1109/C-M.1981.220290
  19. C. L. Wu and T. U. Feng, 'On a Class of Multistage Interconnection Networks,' IEEE Trans. Comput., Vol.C-29, No.8, pp.694-702, Aug., 1980 https://doi.org/10.1109/TC.1980.1675651