Enteric Virus Detection from Environmental Sample by Oligonucleotide DNA Chip

올리고뉴클레오티드 DNA Chip을 이용한 환경시료에서의 장관계바이러스 검출

  • 김정미 (㈜바이오메드랩, 마이크로어레이센터) ;
  • 윤성욱 (경희대학교 생물학과 및 기초과학연구소, ㈜바이오메드랩, 마이크로어레이센터) ;
  • 지영미 (국립보건원 바이러스질환부 소화기바이러스과) ;
  • 윤재득 (국립보건원 바이러스질환부 소화기바이러스과) ;
  • 정용석 (경희대학교 생물학과 및 기초과학연구소)
  • Published : 2002.09.01

Abstract

The usefulness of oligonucleotide DNA chip was evaluated for detection and primary level identification of major waterborne viruses in environmental samples. The enteric waterborne viruses included enterovirus, adenovirus, and rotavirus. Total intracellular RNA of 10 BGM cell plates showing virus-specific cytopathic effects was extracted at the third day after inoculation. The intracellular RNA was then subjected to either enterovirus-specific RT-PCR followed by sequencing analysis, or the DNA chip. Seven out of 10 positive samples in cell culture were positive but the other three sample were turned out to be negative by both RT-PCR and DNA chip analyses. Nucleotide sequencing results and the DNA chip hybridization results of the RT-PCR product were in complete agreement in the identification of the 7 positive samples as enteroviruses. Using the DNA chip, it took only 3∼4 hr to complete detection and primary level identification of target viruses and additional procedures such as gel electrophoresis or nucleotide sequencing were not necessary. We believe that the DNA chip system can be employed as a highly effective and new detection methodology for environmental viruses.

장내바이러스(enterovirus),로타바이러스(rotavirus),그리고 아데노바이러스(adenovirus)등 물을 통해 전파되는 환경바이러스의 신속한 검출 및 1 차적인 분류를 위해 올리고뉴클레오티드 DNA chip을 이용한 분석 시스템의 유용성에 대하여 연구하였다. BGM 세포배양실험에서 바이러스성 세포병변효과(cytopathic effect) 양성으로 판정된 세포단층으로부터 접종배양 3 일 후 세포내 모든 RNA를 분리하여 중합효소연쇄반응과 DNA chip으로 검출여부 및 유전형을 비교 분석한 결과 세포배양에서 양성으로 판정된 10개의 시료 중 3개가 바이러스 음성으로, 7개가 바이러스 양성으로 나타났다. 중합효소연쇄반응과 DNA chip에 의해 양성으로 나타난 7개 시료의 유전형은 두 방법에 의해 모두 장내바이러스로 동정되어 DNA chip에 의한 1차 동정의 유용성도 증명하였다. 세포배양 후 전기영동분석 없이 일차적인 동정과정까지 불과 3∼4 시간 이내에 수행해낼 수 있는 DNA chip분석은 특이성, 신속성, 및 경제성을 고루 갖추어 환경바이러스 검출방법론의 새로운 영역을 구성할 것으로 사료된다.

Keywords

References

  1. Virology: A Laboratory Manual Burrleson, F.G.;T.M. Chambers;D.L. Wiedbrauk
  2. Appl. Environ. Microbiol. v.66 Detection of astroviruses, enteroviruses and adenovirus types 40 and 41 in surface waters collected and evaluated by the Information Collection Rule and an integrated cell culture nested PCR procedure Chapron, C.D.;N.A. Ballester;J.H. Fontaine;C.N. Frades;A.B. Margolin https://doi.org/10.1128/AEM.66.6.2520-2525.2000
  3. Viruses and the Environment(2nd ed.) Viruses in aquatic environments Cooper, J.I.
  4. Nat. Biotechnol. v.18 Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2 Fais, R.;J.P. Day;Npgerry;C. Phelan;S. Narod;F. Barany https://doi.org/10.1038/75452
  5. Wat. Sci. Tech. v.21 The occurrence of enteric viruses in polluted water, correlation to indicator organisms and factors influencing their numbers Geldenhuys, J.C.;P.D. Pretourius
  6. J. Clin. Microbiol. v.30 Identification of group A rotavirus gene 4 types by polymerase chain reaction Gentsch, J.R.;R.I. Glass;P. Woods;V. Gouvea;M. Gorziglia;J. Flores;B.K. Das;M.K. Bhan
  7. Drinking Water Microbiology. Viruses in source and drinking water Gerba, C.P.;J.B. Rose;G.A. McFeters(ed.)
  8. J. Mol. Biol. v.292 Universal DNA microarray method for multiplex detection of low abundance point mutations Gerry, N.P.;N.E. Witowski;J. Day;R.P. Hammer;G. Barany;F. Barany https://doi.org/10.1006/jmbi.1999.3063
  9. Appl. Environ. Microbiol. v.47 Detection of enteric viruses in treated drinking water Keswick, B.H.;C.P. Gerba;H.L. DuPont;J.B. Rose
  10. J. Virol. Methods v.55 Increased sensitivity of poliovirus detection in tap water concentrates by reverse transcriptase-polymerase chain reaction Ma, J­F.;C.P. Gerba;I.L. Pepper https://doi.org/10.1016/0166-0934(95)00065-6
  11. Proc. Natl. Acad. Sci. USA. v.91 Light-generated oligonucleotide arrays for rapid DNA sequence analysis Pease, A.C.;E.J. Sullivan;M.T. Cronin;C.P. Holmes;S.P. Fodoer https://doi.org/10.1073/pnas.91.11.5022
  12. Appl. Environ. Microbiol. v.64 Viral pollution in the environment and in shellfish: human adenovirus detection by PCR as an index of human viruses Pina, S.;M. Puig;F. Lucena;J. Jofre;R. Girones
  13. Appl. Environ. Microbiol. v.60 Detection of adenoviruses and enteroviruses in polluted water by nested PCR amplification Puig, M.;J. Jofre;F. Lucena;A. Allard;G. Wadell;R. Girones
  14. Appl. Environ. Microbiol. v.62 Detection of infectious enteroviruses by an integrated cell culture-PCR procedure Reynolds, K.A.;C.P. Gerba;I.L. Pepper
  15. Genome Res. v.6 A DNA microarray system for analyzing complex DNA sampling using two-color fluorescent probe hybridization Shalon, D.;S.J. Smith;P.O. Brown https://doi.org/10.1101/gr.6.7.639
  16. Science v.270 Quantitative monitoring of gene expression patterns with a complementary DNA microarray Schena, M.D.;R.W. Davis;P.O. Brown https://doi.org/10.1126/science.270.5235.467
  17. Appl. Environ. Microbiol. v.61 Concentration and purification of beef extract mock eluates from water samples for the detection of enteroviruses, hepatitis A virus and Norwalk virus by reverse transcription-PCR Schwab, K.J.;R. De Leon;M.D. Sobsey
  18. Appl. Environ. Microbiol. v.62 Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCR Schwab, K.J.;R. De Leon;M.D. Sobsey
  19. EPA/814-B-95-002 Virus monitoring protocol for the information collection requirements rule USEPA
  20. Current drinking water standards: microbiological contaminants in drinking water contaminant candidate list. USEPA