Bacterial Community of Free-living and Aggregated Bacteria at Thawing Period in Lake Baikal

해빙기 바이칼호에서 부유세균과 Aggregates에 부착한 세균의 군집구조

  • 홍선희 (강원대학교 자연과학대학 환경학과) ;
  • 김옥선 (강원대학교 자연과학대학 환경학과) ;
  • 전선옥 (강원대학교 자연과학대학 환경학과) ;
  • 유재준 (강원대학교 자연과학대학 환경학과) ;
  • 안태석 (강원대학교 자연과학대학 환경학과)
  • Published : 2002.09.01

Abstract

Fluorescent in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes was used to compare the community structures of free-living and aggregated bacteria at thawing period in Lake Baikal. Targeted groups were Eubacteria, $\alpha$-, $\beta$-, $\gamma$- proteobacteria groups, Cytophaga-Flavobacterium group and Planctomycetales. Total bacterial numbers of free-living bacteria were ranged from $0.2{\times}10^6\cells{\cdot}ml^-1$ to $3.2{\times}10^6\cells{\cdot}ml^-1$, which were decreasing with depth, while the aggregated bacterial numbers were dramatically increasing from $0.4{\times}10^4 to 3.3{\times}10^4 \cells{\cdot}ml^-1$ with depth. The ratios of EUB probe binding cells to DAPI counts were ranged from 52.3 to 74.1% in free-living bacteria, and from 39.6 to 66.7% in the aggregated bacteria, respectively. Community structures of the aggregated bacteria were very different from each free-living bacteria at every depth. At 25 m depth, where the chlorophyll a concentration was highest, both structures were quite different from those of surface layers, rendering the fact that the community structures might be affected by phytoplankton. The vertical profile of community structure of aggregated bacteria is particular. The proportion of $\beta$-proteobacteria group was increasing with depth and it was 51.8% at 100 m, but the dominant group was $\gamma$-pro-teobacteria group at 250 m. Taken together, the biodiversity and succession of aggregated bacteria are quite different from free-living bacteria.

러시아 바이칼호에서 해빙기에 부유세균과 aggregates에 부착한 세균의 군집구조를 FISH (fluorescent in situ hybridization)방법으로 0 m부터 250 m수심에서 비교 분석하였다. 조사대상은 Eubacteria에 속하는 세균과 class Proteobacteria에 속하는 세균 중 $\alpha$-, $\beta$-, $\gamma$ -group과 Cytophaga-Flavobacterium group,그리고 Planctomycetales였다. 부유세균의 수는 $0.2{\times}10^6\cells{\cdot}ml^-1 to 3.2{\times}10^6 \cells{\cdot}ml^-1$범위였으며, 수심이 깊어질수록 감소하였다. Aggregate에 부착한 세균은 부유세균과 반대로 수심이 깊어질수록 증가하였고, 개체수의 범위는 0.4~$3.3{\times}10^4$ $cells{\cdot}ml^-1$ 이였다. 총세균수에 대한 Eubacteria 수의 비율은 부유세균의 경우 52.3~74.1%, aggregates에 부착한 세균은 39.6~66.7%로 부유세균보다 부착세균에서 그 비율이 낮았으며, 세균의 군집구조 분석 결과에서도 부유세균과 aggregates애 부착한 세균의 군집구조가 다른 양상으로 나타났다. 특히 두 세균의 군집구조는 식물플랑크톤이 밀집해 있는 25 m 수심에서 급격히 변화하여 식물플랑크톤이 부유세균과 부착세균의 군집의 변화에 밀접한 관련이 있는 것으로 확인되었다, Aggregates에 부착한 세균 군집은 수심에 따라 매우 특이한 변화 양상을 나타내었다. $\beta$-proteobacteria group은 수심이 깊어지면서 그 비율이 높아져, 100m에서는 $\beta$-group이 총세균수는 51.8%를 차지하였으나, 250m에서는 $\gamma$-group이 43.8%를 차지하여, 급격하게 우점 group이 변화하였다. 그러나, 부유세균에서는 전혀 다른 군집 구조를 이루고 있었다. 이러한 결과에서 aggregates에 부착한 세균은 부유세균과는 다른 다양성을 이루고, 다른 천이과정을 거치는 것으로 확인되었다.

Keywords

References

  1. 강원대학교 이학석사 학위 논문 소양호에서 aggregates에 부착한 세균 군집 구조의 변화 오덕화
  2. 강원대학교 이학박사 학위논문 담수생태계에서 세균군집구조의 분석 홍선희
  3. 한국미생물학회지 v.36 팔당호에서 aggregates에 부착한 세균군집구조의 변화 홍선희;오덕화;전선옥;안태석
  4. Appl. Environ. Microbiol. v.65 Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA Acinas, S. G.;J. Anton;F. Rodriguez-Valera
  5. Appl. Environ. Microbiol. v.62 Community analysis of the bacterial assemblages in the winter cover and pelagic layer of a high mountain lake by in situ hybridization Alfreidner, A.;J. Pernthhaler;R. Amman;B. Sattler;F. O. Glockner;A. Wille;R. Psenner
  6. Prog. Oceanogr. v.20 Characteristics, dynamics, and significance of marine snow Alldredge, A. L.;M. W. Silver https://doi.org/10.1016/0079-6611(88)90053-5
  7. Appl. Environ. Microbiol. v.61 Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis Bidle, J. D.;M. Fletcher
  8. Appl. Environ. Microbiol. v.64 Microbial community composition of Wedden sea sediments as revealed by fluorescence in situ hybridization Brossa, E. L.;R. R. Mora;R. Amann
  9. Appl. Environ. Microbiol. v.65 Phylogenetic analysis of particle-attached and free-living bacterial communities in the Colombia River, its estuary, and the adjacent coastal ocean Crump, B. C.;E. V. Armbrust;J. A. Baross
  10. Limnol. Oceanogr. v.38 Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages Delong, E. F.;D. G. Franks;A. L. Alldredge https://doi.org/10.4319/lo.1993.38.5.0924
  11. Appl. Environ. Microbiol. v.59 Phylogenetic diversity of substrate marine microbial communities from the Atlantic and Pacific Oceans Fuhrman, J. A.;K. McCallum;A. A. Davis
  12. Appl. Environ. Microbiol. v.65 Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization Glockner, F. O.;B. M. Fuchs;R. Amann
  13. Deep sea Res. v.17 A microscopic study of organic particles in North Atlantic Ocean Gordon, D. C.
  14. Limnol. Oceanogr. v.38 Limnetic macroscopic organic aggregates (lake snow): Occurrence, characteristics, and microbial dynamics in Lake Constance Grossart, H. P.;M. Simon https://doi.org/10.4319/lo.1993.38.3.0532
  15. Aquat. Microbiol. Ecol. v.15 Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow) Grossart, H. P.;M. Simon https://doi.org/10.3354/ame015127
  16. Appl. Environ. Microbiol. v.58 Dual staining of natural bacterioplankton with 4,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom level 16S rRNA sequences Hicks, R.;R. I. Amann;D. A. Stahl
  17. Limnol. Oceanogr. v.21 Nonliving organic particle formation from bubble dissolution Johnson, B. D. https://doi.org/10.4319/lo.1976.21.3.0444
  18. Appl. Environ. Microbiol. v.68 Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns Lehman, R. M.;S. P. O'Connell https://doi.org/10.1128/AEM.68.4.1569-1575.2002
  19. Appl. Environ. Microbiol. v.15 Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions Manz, W.;R. Amann;W. Ludwig;M. Wagner
  20. Appl. Environ. Microbiol. v.67 α-and β-Proteobacteria control the consumption and release of amino acids on lake snow aggregates Schweitzer, B.;I. Huber;R. Amann;W. Ludwig https://doi.org/10.1128/AEM.67.2.632-645.2001
  21. Appl. Environ. Microbiol. v.62 Identiflcation in situ and dynamics of bacteria on limnetic organic aggregates (lake snow) Weiss, P.;B. Schweitzer;R. Amann;M. Simon